Skip to main content

Modeling and Control of HVDC Systems

  • Chapter
  • First Online:
  • 738 Accesses

Abstract

This chapter gives a brief overview of modeling and control of high voltage DC (HVDC) systems. First, different configurations of HVDC transmission systems are mentioned, which is followed by the state-space averaged modeling of line-commutated converter (LCC) HVDC systems and their control modes. Next, voltage source converter (VSC) HVDC modeling and control in a synchronously rotating dq reference frame is presented. Both grid-connected and islanded modes of control are discussed. Finally, modeling of multiterminal DC (MTDC) grids is briefly presented. The model of AC-MTDC grids in a unified framework is also given. At the end, different control philosophies of MTDC grid are elaborated. This includes discussion of four control options including DC voltage control, voltage droop control, and frequency droop control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdel-Khalik, A.S., Abu-Elanien, A.E.B., Elserougi, A.A., Ahmed, S., Massoud, A.M.: A droop control design for multiterminal HVDC of offshore wind farms with three-wire bipolar transmission lines. IEEE Trans. Power Syst. 31(2), 1546–1556 (2016)

    Article  Google Scholar 

  2. Abdelwahed, M.A., El-Saadany, E.F.: Power sharing control strategy of multiterminal VSC-HVDC transmission systems utilizing adaptive voltage droop. IEEE Trans. Sustainable Energy 8(2), 605–615 (2017)

    Article  Google Scholar 

  3. Ainsworth, J.D.: Proposed benchmark model for study of HVDC controls by simulator or digital computer. In: Proceedings of the CIGRE SC-14 Colloquium HVDC With Weak AC Systems, Maidstone (1985)

    Google Scholar 

  4. Arrillaga, J., Smith, B.D.: AC-DC power system analysis. Institution of Electrical Engineers, Stevenage (1998)

    Google Scholar 

  5. Arrillaga, J., Liu, Y.H., Watson, N.R.: Flexible Power Transmission: The HVDC Options. Wiley, Chichester (2007)

    Book  Google Scholar 

  6. Atighechi, H., Chiniforoosh, S., Jatskevich, J., Davoudi, A., Martinez, J.A., Faruque, M.O., Sood, V., Saeedifard, M., Cano, J.M., Mahseredjian, J., Aliprantis, D.C., Strunz, K.: Dynamic average-value modeling of CIGRE HVDC benchmark system. IEEE Trans. Power Delivery 29(5), 2046–2054 (2014). https://doi.org/10.1109/TPWRD.2014.2340870

    Article  Google Scholar 

  7. Beerten, J., Belmans, R.: Analysis of power sharing and voltage deviations in droop-controlled DC grids. IEEE Trans. Power Syst. 28(4), 4588–4597 (2013)

    Article  Google Scholar 

  8. Beerten, J., D’Arco, S., Suul, J.A.: Frequency-dependent cable modelling for small-signal stability analysis of VSC-HVDC systems. IET Gener. Transm. Distrib. 10(6), 1370–1381 (2016)

    Article  Google Scholar 

  9. Berggren, B., Majumder, R., Sao, C., Lindén, K.: Method and control device for controlling power flow within a DC power transmission network, Assignee: ABB, Filed: 06/30/2010, US8553437 B2, issued Oct 08, 2013

    Google Scholar 

  10. Berggren, B., Lindén, K., Majumder, R.: DC grid control through the pilot voltage droop concept - methodology for establishing droop constants. IEEE Trans. Power Syst. 30(5), 2312–2320 (2015)

    Article  Google Scholar 

  11. Brandt, R.M., Annakkage, U.D., Brandt, D.P., Kshatriya, N.: Validation of a two-time step HVDC transient stability simulation model including detailed HVDC controls and DC line L/R dynamics. In: 2006 IEEE Power Engineering Society General Meeting, pp. 6 (2006). https://doi.org/10.1109/PES.2006.1708868

  12. Chaudhuri, N.R., Majumder, R., Chaudhuri, B., Pan, J.: Stability analysis of VSC MTDC grids connected to multimachine AC systems. IEEE Trans. Power Delivery 26(4), 2774–2784 (2011)

    Article  Google Scholar 

  13. Chaudhuri, N.R., Chaudhuri, B., Majumder, R., Yazdani, A.: Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control. Wiley (2014)

    Google Scholar 

  14. Chen, X., Wang, L., Sun, H., Chen, Y.: Fuzzy logic based adaptive droop control in multiterminal HVDC for wind power integration. IEEE Trans. Energy Convers. 32(3), 1200–1208 (2017)

    Article  Google Scholar 

  15. Chung, S.K.: A phase tracking system for three phase utility interface inverters. IEEE Trans. on Power Electron. 15(3), 431–438 (2000)

    Article  Google Scholar 

  16. Daryabak, M., Filizadeh, S., Jatskevich, J., Davoudi, A., Saeedifard, M., Sood, V.K., Martinez, J.A., Aliprantis, D., Cano, J., Mehrizi-Sani, A.: Modeling of LCC-HVDC systems using dynamic phasors. IEEE Trans. Power Delivery 29(4), 1989–1998 (2014). https://doi.org/10.1109/TPWRD.2014.2308431

    Article  Google Scholar 

  17. Dong, H., Xu, Z., Song, P., Tang, G., Xu, Q., Sun, L.: Optimized power redistribution of offshore wind farms integrated VSC-MTDC transmissions after onshore converter outage. IEEE Trans. Ind. Electron. 64(11), 8948–8958 (2017)

    Article  Google Scholar 

  18. Eriksson, R., Beerten, J., Ghandhari, M., Belmans, R.: Optimizing DC voltage droop settings for AC/DC system interactions. IEEE Trans. Power Delivery 29(1), 362–369 (2014)

    Article  Google Scholar 

  19. Gavriluta, C., Candela, J.I., Rocabert, J., Luna, A., Rodriguez, P.: Adaptive droop for control of multiterminal DC bus integrating energy storage. IEEE Trans. Power Delivery 30(1), 16–24 (2015)

    Article  Google Scholar 

  20. Grund, C.E.: Functional model of two-terminal HVDC systems for transient and steady-state stability IEEE working group on dynamic performance and modeling of DC systems. IEEE Power Eng. Rev. PER-4(6), 36–37 (1984). https://doi.org/10.1109/MPER.1984.5526094

    Article  Google Scholar 

  21. Hu, L.: Sequence impedance and equivalent circuit of HVDC systems. IEEE Trans. Power Syst. 13(2), 354–360 (1998). https://doi.org/10.1109/59.667351

    Article  Google Scholar 

  22. Karawita, C., Annakkage, U.D.: Control block diagram representation of an HVDC system for sub-synchronous frequency interaction studies. In: 9th IET International Conference on AC and DC Power Transmission (ACDC 2010), pp. 1–5 (2010). https://doi.org/10.1049/cp.2010.0998

  23. Kimbark, E.: Direct Current Transmission, vol. 1. Wiley-Interscience, New York (1971). http://books.google.com/books?id=eMMiAAAAMAAJ. Accessed Feb 2014

    Google Scholar 

  24. Kirakosyan, A., El-Saadany, E.F., Moursi, M.S.E., Acharya, S.S., Hosani, K.A.: Control approach for the multi-terminal HVDC system for the accurate power sharing. IEEE Trans. Power Syst. PP(99), 1–1 (2017)

    Google Scholar 

  25. Kumar, R., Leibfried, T.: Analytical modelling of HVDC transmission system converter using Matlab/Simulink. In: IEEE Systems Technical Conference on Industrial and Commercial Power 2005, pp. 140–146 (2005). https://doi.org/10.1109/ICPS.2005.1436367

    Google Scholar 

  26. Kundur, P.: Power System Stability and Control. The EPRI Power System Engineering Series. McGraw-Hill, New York (1994)

    Google Scholar 

  27. Kwon, D.H., Kim, Y.J., Moon, S.I.: Modeling and analysis of an LCC HVDC system using DC voltage control to improve transient response and short-term power transfer capability. IEEE Trans. Power Delivery 33(4), 1922–1933 (2018). https://doi.org/10.1109/TPWRD.2018.2805905

    Article  Google Scholar 

  28. Li, G., Du, Z., Shen, C., Yuan, Z., Wu, G.: Coordinated design of droop control in MTDC grid based on model predictive control. IEEE Trans. Power Syst. 33(3), 2816–2828 (2017)

    Article  Google Scholar 

  29. Marten, A.K., Sass, F., Westermann, D.: Continuous p-v-characteristic parameterization for multi-terminal HVDC systems. IEEE Trans. Power Delivery 32(4), 1665–1673 (2017)

    Article  Google Scholar 

  30. Nicolau, V.: On PID controller design by combining pole placement technique with symmetrical optimum criterion. In: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–5 (2013)

    Article  MathSciNet  Google Scholar 

  31. Osauskas, C., Wood, A.: Small-signal dynamic modeling of HVDC systems. IEEE Trans. Power Delivery 18(1), 220–225 (2003). https://doi.org/10.1109/TPWRD.2002.803843

    Article  Google Scholar 

  32. Padiyar, K.R.: HVDC power Transmission Systems. New Age International, New Delhi (2012)

    Google Scholar 

  33. Prieto-Araujo, E., Bianchi, F.D., Junyent-Ferre, A., Gomis-Bellmunt, O.: Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms. IEEE Trans. Power Delivery 26(4), 2476–2485 (2011)

    Article  Google Scholar 

  34. Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P.: DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 1171–1180 (2014)

    Article  Google Scholar 

  35. Sauer, P.W., Pai, M.A.: Power system dynamics and stability. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  36. Sharifabadi, K., Harnefors, L., Nee, H., Norrga, S., Teodorescu, R.: Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley, Newark (2016)

    Book  Google Scholar 

  37. Thams, F., Eriksson, R., Molinas, M.: Interaction of droop control structures and its inherent effect on the power transfer limits in multiterminal VSC-HVDC. IEEE Trans. Power Delivery 32(1), 182–192 (2017)

    Article  Google Scholar 

  38. Toledo, P.F.D., Angquist, L., H.-p. Nee: Frequency domain model of an HVDC link with a line-commutated current-source converter. Part I: fixed overlap. IET Gener. Transm. Distrib. 3(8), 757–770 (2009). https://doi.org/10.1049/iet-gtd.2008.0587

    Article  Google Scholar 

  39. Toledo, P.F.D., Angquist, L., H.-p. Nee: Frequency domain model of an HVDC link with a line-commutated current-source converter. Part II: varying overlap. IET Gener. Transm. Distrib. 3(8), 771–782 (2009). https://doi.org/10.1049/iet-gtd.2008.0588

    Article  Google Scholar 

  40. Yang, X., Chen, C.: HVDC dynamic modelling for small signal analysis. IEE Proc. Gener. Transm. Distrib. 151(6), 740–746 (2004). https://doi.org/10.1049/ip-gtd:20040798

    Article  Google Scholar 

  41. Yazdani, A., Iravani, R.: Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Wiley, Oxford (2010)

    Book  Google Scholar 

  42. Zhang, M., Yuan, X.: Modeling of LCC HVDC system based on mass-damping-spring concept. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). https://doi.org/10.1109/PESGM.2016.7741661

  43. Zhao, X., Li, K.: Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems. IET Gener. Transm. Distrib. 9(10), 975–983 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhuri, N.R. (2019). Modeling and Control of HVDC Systems. In: Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03409-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03409-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03408-5

  • Online ISBN: 978-3-030-03409-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics