Skip to main content

Classical and Molecular Carrot Breeding

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Classical plant breeding approaches have succeeded in improving the productivity of the carrot crop for growers and the quality of the crop for consumers over the last century. A significant breeding focus has been on genetic control of male fertility to assure successful production of hybrid cultivars, with relatively little emphasis on formal studies of other reproductive traits such as seed yield and vernalization requirements, or on crop morphology. Another strong focus for carrot breeders has been selection for resistance to Alternaria leaf blight and root-knot nematodes. Future crop producers will likely face more challenging abiotic threats and additional biotic threats to the crop, and little effort has been directed to those traits. In an effort to improve carrot consumer quality, pigments and flavor compounds have received much attention by carrot breeders. With the expansion of carrot global markets, a broader range of consumer traits may require attention as carrot breeding programs move forward. The sequencing of the carrot genome provides an important foundation for a better understanding of the genetics of traits important for growers and consumers, for developing molecular tools to accelerate the breeding process, and for identifying genes of potential interest for gene editing. The breadth of genetic diversity in carrot germplasm is a valuable resource that will provide an important foundation for future carrot breeding. A better understanding of that diversity will be needed to take full advantage of it, and the carrot genome sequence will provide insights into that understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Article  Google Scholar 

  • Ali A, Matthews WC, Cavagnaro PF, Iorizzo M, Roberts PA, Simon PW (2014) Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J Hered 105:288–291

    Article  CAS  Google Scholar 

  • Angell FF, Gabelman WH (1968) Inheritance of resistance in carrot, Daucus carota var. sativa, to the leafspot fungus, Cercospora carotae. J Am Soc Hort Sci 93:434–437

    Google Scholar 

  • Angell FF, Gabelman WH (1970) Inheritance of purple petiole in carrot Daucus carota var. sativa. Hort Sci 5:175

    Google Scholar 

  • Bach IC, Olesen A, Simon PW (2002) PCR-based markers to differentiate the mitochondrial genome of petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365

    Article  CAS  Google Scholar 

  • Banga O, Petiet J, Van Bennekom JL (1964) Genetical analysis of male-sterility in carrots, Daucus carota L. Euphytica 13:75–93

    Article  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Boiteux LS, Hyman JR, Bach IC, Fonseca MEN et al (2004) Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37–44

    Article  CAS  Google Scholar 

  • Borner T, Linke B, Nothnagel T, Scheike R et al (1995) Inheritance of nuclear and cytoplasmic factors affecting male sterility in Daucus carota. Adv Plant Breed 18:111–122

    Google Scholar 

  • Borthwick HA, Emsweller SL (1933) Carrot breeding experiments. Proc Am Soc Hortic Sci 30:531–533

    Google Scholar 

  • Bonnet A (1983) Source of resistance to powdery mildew for breeding cultivated carrots. Agronomie 3:33–37

    Article  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Budahn H, BaraÅ„ski R, Grzebelus D, KieÅ‚kowska et al (2014) Mapping genes governing flower architecture and pollen development in a double mutant population of carrot. Front Plant Sci 5:504

    Article  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Buishand JG, Gabelman WH (1980) Studies on the inheritance of root color and carotenoid content in red x yellow and red × white crosses of carrot, Daucus carota L. Euphytica 29:241–260

    Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M, Senalik D, Parsons J, Ellison S, Simon PW (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118

    Article  Google Scholar 

  • Dickson MH (1966) The inheritance of longitudinal cracking in carrot. Euphytica 15:99–101

    Google Scholar 

  • Ellison S, Senalik D, Bostan H, Iorizzo M, Simon PW (2017) Fine mapping, transcriptome analysis, and marker development for Y2, the gene that conditions β-carotene accumulation in carrot (Daucus carota L.). G3: Genes, Genomes, Genet 7:2665–2675

    Article  CAS  Google Scholar 

  • Ellison S, Luby C, Corak K, Coe K et al (2018) Association analysis reveals the importance of the Or gene in carrot (Daucus carota L.) carotenoid presence and domestication. Genetics 210:1–12

    Article  Google Scholar 

  • Emsweller SL, Burrell PC, Borthwick HA (1935) Studies on the inheritance of color in carrots. Proc Am Soc Hortic Sci 33:508–511

    Google Scholar 

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Am Soc Hortic Sci 108:50–54

    Google Scholar 

  • Goldman IL, Breitbach DN (1996) Inheritance of a recessive character controlling reduced carotenoid pigmentation in carrot (Daucus carota L.). J Hered 87:380–382

    Article  Google Scholar 

  • Hansche PE, Gabelman WH (1963) Digenic control of male sterility in carrots, Daucus carota L. Crop Sci 3:383–386

    Article  Google Scholar 

  • Imam MK, Gabelman WH (1968) Inheritance of carotenoids in carrots, Daucus carota, L. Proc Am Soc Hortic Sci 93:419–428

    Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  Google Scholar 

  • Jourdan M, Gagne S, Dubois-Laurent C et al (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population. PLoS ONE 10:e0116674

    Article  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS et al (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  CAS  Google Scholar 

  • Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross. Theor Appl Genet 119:1155–1169

    Article  Google Scholar 

  • Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930

    Google Scholar 

  • Kust AF (1970) Inheritance and differential formation of color and associated pigments in xymlem and phloem of carrot, Daucus carota, L. PhD, University of Wisconsin

    Google Scholar 

  • Laferriere L, Gabelman WH (1968) Inheritance of color, total carotenoids, alpha-carotene, and beta-carotene in carrots, Daucus carota L. Proc Am Soc Hortic Sci 93:408–418

    Google Scholar 

  • Le Clerc V, Pawelec A, Birolleau-Touchard C, Suel A, Briard M (2009) Genetic architecture of factors underlying partial resistance to Alternaria leaf blight in carrot. Theor Appl Genet 118:1251–1259

    Article  Google Scholar 

  • Le Clerc V, Marques S, Suel A, Huet S, Hamama L, Voisine L, Auperpin E, Jourdan M, Barrot L, Prieur R (2015) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theor Appl Genet 128:2177–2187

    Article  Google Scholar 

  • Macko-Podgórni A, Machaj G, Stelmach K, Senalik D et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Front Plant Sci 8:12

    Google Scholar 

  • Mehring-Lemper M (1987) Genetisch-züchterische Untersuchungen zur Schaffung von Hybridsorten bei Möhren (Daucus carota L.), Dissertation, Universität Hannover

    Google Scholar 

  • Morelock TE, Hosfield GL (1976) Glabrous seedstalk in carrot: inheritance and use as a genetic marker. Hort Sci 11:144

    Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  Google Scholar 

  • Nakajima Y, Yamamoto T, Muranaka T, Oeda K (1999) Genetic variation of petaloid male-sterile cytoplasm of carrots revealed by sequence-tagged sites (STSs). Theor Appl Genet 99:837–843

    Article  CAS  Google Scholar 

  • Nieuwhof M, Garritsen F (1984) Inheritance of spine formation on seeds of carrot (Daucus carota L.). Euphytica 33:75–80

    Article  Google Scholar 

  • Nothnagel T, Ahne R, Straka P (2005) Morphology, inheritance and mapping of a compressed lamina mutant of carrot. Plant Breed 124:481–486

    Article  CAS  Google Scholar 

  • Parsons J, Matthews W, Iorizzo M et al (2015) Meloidogyne incognita nematode resistance QTL in carrot. Mol Breed 35:114

    Article  Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genom 268:122–129

    Article  CAS  Google Scholar 

  • Schulz B, Westphal L, Wricke G (1994) Linkage groups of isozymes, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 74:67–76

    Article  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980) Correlations between sensory and objective parameters of carrot flavor. J Agric Food Chem 28:549–552

    Article  CAS  Google Scholar 

  • Simon PW, Wolff XY, Peterson CE et al (1989) High Carotene Mass carrot population. HortScience 24:174

    Google Scholar 

  • Simon PW (1996) Inheritance and expression of purple and yellow storage root color in carrot. J Hered 87:63–66

    Article  Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon Y-S (2008) Carrot: In: Prohens J, Carena MJ, Nuez F (eds) Handbook of crop breeding, Volume 1, Vegetable breeding. Springer, Heidelberg, pp 327–357

    Chapter  Google Scholar 

  • Thompson DJ (1961) Studies on the inheritance of male-sterility in the carrot, Daucus carota L. var. sativa. Proc Am Soc Hortic Sci 78:332–338

    Google Scholar 

  • Turner SD, Maurizio PL, Valdar W, Yandell BS, Simon PW (2017) Dissecting the genetic architecture of shoot growth in carrot (Daucus carota L.) using a diallel mating design. G3: Genes, Genomes, Genet 8:411–426

    Article  Google Scholar 

  • Turner S, Ellison S, Senalik DA, Simon PW et al (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Front Plant Sci 9:1703

    Google Scholar 

  • Umiel N, Gabelman WH (1972) Inheritance of root color and carotenoid synthesis in carrot, Daucus carota L.: Orange vs. red. J Am Soc Hort Sci 97:453–460

    Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64

    Article  CAS  Google Scholar 

  • Wang M, Goldman I (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J Hered 87:119–123

    Article  Google Scholar 

  • Yau Y, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162

    Article  CAS  Google Scholar 

  • Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots with codominant, PCR-based markers. Mol Breed 16:1–10

    Article  CAS  Google Scholar 

  • Yildiz M, Willis DK, Cavagnaro PF, Iorizzo M, Abak K, Simon PW (2013) Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Appl Genet 126:1689–1702

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, P.W. (2019). Classical and Molecular Carrot Breeding. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_9

Download citation

Publish with us

Policies and ethics