Skip to main content

Carrot Molecular Cytogenetics

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

In this chapter, we review the contribution of cytogenetics to our understanding of the genome organization of the carrot (Daucus carota subsp. sativus) and its wild Daucus relatives. The genus Daucus includes about 40, mainly diploid, species with basic chromosome numbers ranging from n = 8 to n = 11. Early studies have suffered the difficulty to distinguish individual carrot chromosomes. Thanks to the development of carrot genomic resources, reliable chromosome identification and high-resolution karyotyping were obtained by using fluorescence in situ hybridization (FISH) and bacterial artificial chromosomes (BACs) as well as cocktails of repetitive sequences. These advances have contributed to study the organization and distribution of several repeat elements, such as miniature inverted–repeat transposable elements (MITEs) and retrotransposons, identify candidate centromeric and knob-associated repeats in carrot and other Daucus species, and begin uncovering syntenic chromosome regions between carrot and other Daucus species. Genome size analysis of about ten diploid species indicated a three-fold difference across Daucus. However, for many species, basic cytological data remain sketchy. Given the difficult taxonomy and the ongoing revision of the entire genus, we briefly argue that expanding such data as well as comparative cytogenetics studies in Daucus will contribute to clarify the phylogeny and perform a more effective exploitation and management of the Daucus germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Safadi B, Simon PW (1990) The effects of gamma irradiation on the growth and cytology of carrot (Daucus carota L.) tissue culture. Environ Exp Bot 30:361–371

    Article  Google Scholar 

  • Aparicio Martínez A (1989) Números cromosomáticos de plantas occidentales, 487–507. An Jard Bot Madrid 45:483–494

    Google Scholar 

  • Arbizu C, Ruess H, Senalik D et al (2014) Phylogenomics of the carrot genus (Daucus, Apiaceae). Am J Bot 101:1666–1685

    Article  PubMed  Google Scholar 

  • Arbizu CI, Simon PW, Martínez-Flores F et al (2016) Integrated molecular and morphological studies of the Daucus guttatus complex (Apiaceae). Syst Bot 41:479–492

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Ávila Robledillo L, Koblížková A, Novák P et al (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8:5838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai C, Alverson WS, Follansbee A et al (2012) New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann Bot 110:1623–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banasiak LA, Wojewódzka J, Baczyński JP et al (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65:563–585

    Article  Google Scholar 

  • Bao W, Zhang W, Yang Q et al (2006) Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics 275:421–430

    Article  CAS  PubMed  Google Scholar 

  • Bayliss MW (1973) Origin of chromosome number variation in cultured plant cells. Nature 246:529–530

    Article  Google Scholar 

  • Bayliss MW (1975) The effects of growth in vitro on chromosome complement of Daucus carota L. suspension cultures. Chromosoma 51:404–411

    Article  Google Scholar 

  • Bayliss MW (1977) Factors affecting the frequency of tetraploid cells in a predominantly diploid suspension culture of Daucus carota. Protoplasma 92:109–115

    Article  Google Scholar 

  • Bell CR, Constance L (1957) Chromosome numbers in Umbelliferae. I. Am J Bot 44:565–572

    Article  Google Scholar 

  • Bell CR, Constance L (1960) Chromosome numbers in Umbelliferae. II. Am J Bot 47:24–32

    Article  Google Scholar 

  • Bell CR, Constance L (1966) Chromosome numbers in Umbelliferae. III. Am J Bot 53:512–520

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc B 274:227–274

    Article  CAS  Google Scholar 

  • Betekhtin A, Jenkins G, Hasterok R (2014) Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One 9(12):e115108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Borkird C, Sung ZR (1987) Isolation and characterization of ABA-insensitive cell lines of carrot. Plant Physiol 84:1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braz GT, He L, Zhao H et al (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523

    Article  CAS  PubMed  Google Scholar 

  • Cao HX, Vu GT, Wang W et al (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209:354–363

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Chung SM, Szklarczyk M et al (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M et al (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118

    Article  CAS  Google Scholar 

  • Chao YT, Chen WC, Chen CY et al (2018) Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol J (In press)

    Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Constance L, Chuang T-I (1982) Chromosome numbers of Umbelliferae (Apiaceae) from Africa south of the Sahara. Bot J Linn Soc 85:195–208

    Article  Google Scholar 

  • Constance L, Chuang T-I, Bell CR (1976) Chromosome numbers in Umbelliferae. V. Am J Bot 58:577–587

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H et al (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Dong F, Song J, Naess SK et al (2000) Development and applications of a set of chromosome specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Dong G, Shen J, Zhang Q et al (2018) Development and applications of chromosome-specific cytogenetic BAC-FISH probes in S. spontaneum. Front Plant Sci 9:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudits D, Kao KN, Constabel F, Gamborg OL (1976) Embryogenesis and formation of tetraploid and hexaploid plants from carrot protoplasts. Can J Bot 54:1063–1067

    Article  CAS  Google Scholar 

  • Dudits D, Gy Hadlaczky, Levi E et al (1977) Somatic hybridization of Daucus carota and D. capillifolius by protoplast fusion. Theor Appl Genet 51:127–132

    Article  CAS  PubMed  Google Scholar 

  • Dunemann F, Schrader O, Budahn H, Houben A (2014) Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.). PLoS One 9(6):e98504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellison S, Senalik D, Bostan H et al (2017) Fine mapping, transcriptome analysis, and marker development for Y2, the gene that conditions β-carotene accumulation in carrot (Daucus carota L.). G3: Genes Genomes Genet 7(8):2665–2675

    Article  CAS  Google Scholar 

  • Essad S, Maunoury C (1985) Banding C et biométrie appliqués à l’analyse du caryotype de carotte (Daucus carota L.). Agron EDP Sci 5:871–876

    Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  CAS  PubMed  Google Scholar 

  • Fonsêca A, Ferraz ME, Pedrosa-Harand A (2016) Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 125:413–421

    Article  PubMed  CAS  Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    Article  CAS  PubMed  Google Scholar 

  • Gaiero P, van de Belt J, Vilaró F et al (2017) Collinearity between potato (Solanum tuberosum L.) and wild relatives assessed by comparative cytogenetic mapping. Genome 60:228–240

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Wu Y, Koblížková A et al (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso AC, Rodrigues L, Gomes I et al (2008) Preliminary data on microcharacters and chromosome number in Tornabenea species (Apiaceae) from Cape Verde Islands. Plant Biosyst 142:87–93

    Article  Google Scholar 

  • Grzebelus D, Simon PW (2009) Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica 135:347–353

    Article  PubMed  Google Scholar 

  • Grzebelus D, Jagosz B, Simon PW (2007) The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390:67–74

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus E, Szklarczyk M, Baranski R (2012) An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tiss Organ Cult 109:101–109

    Article  Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D et al (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol Breeding 33:625–637

    Article  CAS  Google Scholar 

  • Hamal IA, Langer A, Koul AK (1986) Nucleolar organizing region in the Apiaceae (Umbelliferae). Plant Syst Evol 154:11–30

    Article  Google Scholar 

  • Han Y, Zhang T, Thammapichai P et al (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D et al (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom 12:389

    Article  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison SL et al (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938

    Article  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly reveals new insights into carotenoid accumulation and Asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Iovene M, Grzebelus E, Carputo D et al (2008a) Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. Am J Bot 95:793–804

    Article  PubMed  Google Scholar 

  • Iovene M, Wielgus SM, Simon PW et al (2008b) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovene M, Cavagnaro PF, Senalik D et al (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19:493–506

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Feschotte C, Zhang X et al (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN et al (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Widholm JM (1984) Techniques for chromosome analysis of carrot culture cells. Plant Mol Biol Rep 2:37–42

    Article  Google Scholar 

  • Lazar GB, Dudits D, Sung ZR (1981) Expression of cycloheximide resistance in carrot somatic hybrids and their segregants. Genetics 98:347–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HR, Zhang W, Langdon T et al (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenbein W (1932) Karyologische studien an Daucus carota. Ber Deut Bot Ges 50:399–406 (cited in Sharma and Ghosh 1954)

    Google Scholar 

  • Lou Q, Iovene M, Spooner DM et al (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Zhang Y, He Y et al (2014) Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 78:169–179

    Article  CAS  PubMed  Google Scholar 

  • Luque T, Lifante ZD (1991) Chromosome numbers of plants collected during Iter Mediterraneum I in the SE of Spain. Bocconea 1:303–364

    Google Scholar 

  • Lysak MA, Koch MA, Pecinka A et al (2005) Chromosome triplication found across the tribe Brassicaceae. Genome Res 15:516–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Mandakova T, Schranz ME (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr Opin Plant Biol 30:108–115

    Article  PubMed  Google Scholar 

  • Ma L, Vu GTH, Schubert V et al (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res 18:841–850

    Article  CAS  PubMed  Google Scholar 

  • Macko-Podgorni A, Nowicka A, Grzebelus E et al (2013) DcSto: carrot Stowaway-like elements are abundant, diverse, and polymorphic. Genetica 141:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macko-Podgórni A, Machaj G, Stelmach K et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Front Plant Sci 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandáková T, Li Z, Barker MS et al (2017) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J 91:3–21

    Article  PubMed  CAS  Google Scholar 

  • McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29

    Article  CAS  PubMed  Google Scholar 

  • Melters DP, Bradnam KR, Young HA et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowicka A, Grzebelus E, Grzebelus D (2012) Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes. Genome 55:205–213

    Article  CAS  PubMed  Google Scholar 

  • Nowicka A, Grzebelus E, Grzebelus D (2016a) Precise karyotyping of carrot mitotic chromosomes using multicolour-FISH with repetitive DNA. Biol Plant 60:25–36

    Article  CAS  Google Scholar 

  • Nowicka A, Sliwinska E, Grzebelus D et al (2016b) Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci Hortic 209:132–138

    Article  CAS  Google Scholar 

  • Owens S (1974) An examination of the floral biology, breeding systems and cytology in species of the genus Daucus and related genera in the tribe Caucerlidea (Umbelliferae). PhD thesis, University of Reading (cited in Bennett and Smith 1976)

    Google Scholar 

  • Park M, Park J, Kim S et al (2012) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J 69:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa-Harand A, Kami J, Gepts P et al (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417

    Article  CAS  PubMed  Google Scholar 

  • Pustahija F, Brown SC, Bogunić F et al (2013) Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil 373:427–453

    Article  CAS  Google Scholar 

  • Rice A, Glick L, Abadi S et al (2015) The Chromosome Counts Database (CCDB)—a community resource of plant chromosome numbers. New Phytol 206:19–26

    Article  PubMed  Google Scholar 

  • Rong J, Lammers Y, Strasburg JL et al (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genom 15:895

    Article  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publishing, New York

    Google Scholar 

  • Sáenz Laín C (1981) Research on Daucus L. (Umbelliferae). An Inst Bot AJ Cavanilles 37:481–533

    Google Scholar 

  • Saski CA, Scheffler BE, Hulse-Kemp AM et al (2017) Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 7:15274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrader O, Ahne R, Fuchs J (2003) Karyoptype analysis of Daucus carota L. using Giemsa C-Banding and FISH of 5S and 18S-25S rRNA specific genes. Caryologia 56:149–154

    Article  Google Scholar 

  • Sharma AK, Bhattacharyya NK (1959) Further investigations on several genera of Umbelliferae and their interrelationships. Genetica 30:1–62

    Article  Google Scholar 

  • Sharma AK, Ghosh C (1954) Cytogenetics of some of the Indian umbellifers. Genetica 27:17–44

    Article  CAS  PubMed  Google Scholar 

  • Shearer LA, Anderson LK, de Jong H et al (2014) Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3: Genes Genomes Genet 4:1395–1405

    Article  CAS  Google Scholar 

  • Simon PW (1984) Carrot genetics. Plant Mol Biol Rep 2:54–63

    Article  Google Scholar 

  • Sinha BM, Sinha AK (1978) The chromosomes of certain species of Umbelliferae. Botanique 8:117–122

    Google Scholar 

  • Sliwinska E (2018) Flow cytometry—a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic 30:103–128

    Article  Google Scholar 

  • Smith SM, Street HE (1974) The decline of embryogenic potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured. Ann Bot 38:223–241

    Article  Google Scholar 

  • Smith J, Furner I, Sung RZ (1981) Nutritional and karyotypic characterization of a haploid cell culture of Daucus carota L. In vitro 17:315–321

    Article  Google Scholar 

  • Spalik K, Downie SR (2007) Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data. J Biogeogr 34:2039–2054

    Article  Google Scholar 

  • Spalik K, Piwczyński M, Danderson CA et al (2010) Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae. J Biogeogr 37:1977–1994

    Google Scholar 

  • Spooner D, Rojas P, Bonierbale M et al (2013) Molecular phylogeny of Daucus (Apiaceae). Syst Bot 38(3):850–857

    Article  Google Scholar 

  • Spooner DM, Widrlechner MP, Reitsma KR et al (2014) Reassessment of practical subspecies identifications of the USDA Daucus carota L. germplasm collection: morphological data. Crop Sci 54:706–718

    Article  Google Scholar 

  • Spooner DM, Ruess H, Iorizzo M et al (2017) Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. Am J Bot 104:296–312

    Article  CAS  PubMed  Google Scholar 

  • Subramanian D (1986) Cytotaxonomical studies in South Indian Apiaceae. Cytologia 51:479–488

    Article  Google Scholar 

  • Suda J, Kyncl T, Jarolímová V (2005) Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Syst Evol 252:215–238

    Article  CAS  Google Scholar 

  • Sung ZR, Jacques S (1980) 5-Fluorouracil resistance in carrot cell cultures. Its use in studying the interaction of the pyrimidine and arginine pathways. Planta 148:389–396

    Article  CAS  PubMed  Google Scholar 

  • Sussex IM (2008) The scientific roots of modern plant biotechnology. Plant Cell 20:1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szinay D, Chang S, Khrustaleva L et al (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637

    Article  CAS  PubMed  Google Scholar 

  • Szinay D, Wijnker E, van den Berg R et al (2012) Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol 195:688–698

    Article  CAS  PubMed  Google Scholar 

  • Tavares AC, Loureiro J, Castro S et al (2014) Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochem Syst Ecol 55:222–230

    Article  CAS  Google Scholar 

  • Tek AL, Song J, Macas J et al (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt R, Oberprieler C (1994) Chromosome numbers of North African phanerogams. IV. Candollea 49:549–570

    Google Scholar 

  • Vogt R, Oberprieler C (2009) Chromosome numbers of North African phanerogams. IX. In: Marhold K (ed) IAPT/IOPB chromosome data 8. Taxon 58:1282–1283

    Google Scholar 

  • Wang C-JR, Harper L, Cande ZW (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Koo D, Li D et al (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    Article  CAS  PubMed  Google Scholar 

  • Zenkteler M (1962) Microsporogenesis and tapetal development in normal and male-sterile carrots (Daucus carota). Am J Bot 49:341–348

    Article  Google Scholar 

  • Zhang WL, Wai CM, Ming R et al (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3:166–170

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Domenico Carputo for his helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Iovene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iovene, M., Grzebelus, E. (2019). Carrot Molecular Cytogenetics. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_8

Download citation

Publish with us

Policies and ethics