Skip to main content

Genetics and Genomics of Carrot Abiotic Stress

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Plant reaction to abiotic stresses leading to stress tolerance is a complex and multi-level process comprising several inter-dependent mechanisms. While it has been extensively studied in model plant species, it has not been a subject of systematic investigation in carrot. Only few reports pointing at the importance of particular proteins in response to stressors have been published. No attempt has been made to describe regulatory mechanisms governing tolerance to heat, cold, drought, salinity and other abiotic stresses in carrot. Nevertheless, the issue seems vital, as agriculture is coping with global climate changes. Also, the area of carrot cultivation worldwide is growing and its adaptation to environmental conditions outside the temperate climatic zone would provide health benefits to human populations suffering from malnutrition. In the present chapter, we review the existing knowledge on the reaction of carrot to abiotic stresses, with particular emphasis on molecular or genetic mechanisms governing stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn Y-J, Song N-H (2012) A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. HortScience 47:143–148

    Article  CAS  Google Scholar 

  • Alegria C, Pinheiro P, Duthoit M, Gonçalves EM, Moldão-Martins M, Abreu M (2012) Fresh-cut carrot (cv. Nantes) quality as affected by abiotic stress (heat shock and UV-C irradiation) pre-treatments. LWT Food Sci Technol 48:197–203

    Article  CAS  Google Scholar 

  • Annon A, Rathore K, Crosby K (2014) Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. In Vitro Cell Dev Biol Plant 50:299–306

    Article  CAS  Google Scholar 

  • Bano S, Ashraf M, Akram NA (2014) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). J Plant Interact 9:324–329

    Article  CAS  Google Scholar 

  • Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Transgenic Plant J 2:18–38

    Google Scholar 

  • Becerra-Moreno A, Redondo-Gil M, Benavides J, Nair V, Cisneros-Zevallos L, Jacobo-Velázquez DA (2015) Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front Plant Sci 6:837

    Article  Google Scholar 

  • Campos MD, Nogales A, Cardoso HG, Kumar SR, Nobre T, Sathishkumar R, Arnholdt-Schmitt B (2016) Stress-induced accumulation of DcAOX1 and DcAOX2a transcripts coincides with critical time point for structural biomass prediction in carrot primary cultures (Daucus carota L.). Front Genet 7:1

    Article  Google Scholar 

  • Cardoso HG, Campos MD, Costa AR, Campos MC, Nothnagel T, Arnholdt-Schmitt B (2009) Carrot alternative oxidase gene AOX2a demonstrates allelic and genotypic polymorphisms in intron 3. Physiol Plantarum 137:592–608

    Article  CAS  Google Scholar 

  • Chen Y-Y, Li M-Y, Wu X-J, Huang Y, Ma J, Xiong A-S (2015) Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot. Mol Breeding 35:125

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  Google Scholar 

  • Costa JH, Cardoso HG, Campos MD, Zavattieri A, Frederico AM, Fernandes de Melo D, Arnholdt-Schmitt B (2009) Daucus carota L.—an old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes. Plant Physiol Biochem 47:753–759

    Article  CAS  Google Scholar 

  • del Rosario Cuéllar-Villarreal M, Ortega-Hernández E, Becerra-Moreno A, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2016) Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol Technol 119:18–26

    Article  Google Scholar 

  • Demiray H, Dereboylu AE, Altan F, ZeytünlüoÄŸlu A (2011) Identification of proteins involved in excess boron stress in roots of carrot (Daucus carota L.) and role of niacin in the protein profiles. Afr J Biotechnol 10:15545–15551

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128

    Article  CAS  Google Scholar 

  • Formica-Oliveira AC, Martínez-Hernández GB, Díaz-López V, Artés F, Artés-Hernández F (2017) Effects of UV-B and UV-C combination on phenolic compounds biosynthesis in fresh-cut carrots. Postharvest Biol Technol 127:99–104

    Article  CAS  Google Scholar 

  • Foyer H, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  • Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59

    Article  CAS  Google Scholar 

  • Gibberd MR, Turner NC, Storey R (2002) Influence of saline irrigation on growth, ion accumulation and partitioning and leaf gas exchange of carrot (Daucus carota L.). Ann Bot 90:715–724

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Han C, Li J, Jin P, Li X, Wang L, Zheng Y (2017) The effect of temperature on phenolic content in wounded carrots. Food Chem 215:116–123

    Article  CAS  Google Scholar 

  • Heredia JB, Cisneros-Zevallos L (2009) The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol Technol 51:242–249

    Article  CAS  Google Scholar 

  • Huang Y, Li M-Y, Wang F, Xu Z-S, Huang W, Wang G-L, Ma J, Xiong A-S (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905

    Article  CAS  Google Scholar 

  • Huang W, Huang Y, Li M-Y, Wang F, Xu Z-S, Xiong A-S (2016) Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress. Biotechnol Lett 38:145–155

    Article  CAS  Google Scholar 

  • Iorizzo I, Ellison E, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  Google Scholar 

  • Jung YC, Lee HJ, Yum SS, Soh WY, Cho DY, Auh CK, Lee TK, Soh HC, Kim YS, Lee SC (2005) Drought-inducible—but ABA-independent—thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep 24:366–373

    Article  CAS  Google Scholar 

  • Kasiri MR, Hassandokht MR, Kashi A, Shahi-Gharahlar A (2013) Evaluation of genetic diversity in Iranian yellow carrot accessions (Daucus carota var. sativus), an exposed to extinction rooty vegetable, using morphological characters. Int J Agric Crop Sci 6:151–156

    Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  Google Scholar 

  • KieÅ‚kowska A, Grzebelus E, Lis-KrzyÅ›cin A, Maćkowska K (2019) Application of the salt stress to the protoplast cultures of the carrot (Daucus carota L.) and evaluation of the response of regenerants to soil salinity. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-019-01578-7

    Article  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  Google Scholar 

  • Kovács G, Sorvari S, Scott P, Toldi O (2006) Pyrophosphate: fructose 6-phosphate 1-phosphotransferase operates in net gluconeogenic direction in taproots of cold and drought stressed carrot plants. Acta Biol Szeged 50:25–30

    Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  Google Scholar 

  • Kumar SR, Anandhan S, Dhivya S, Zakwan A, Sathishkumar R (2013) Isolation and characterization of cold inducible genes in carrot by suppression subtractive hybridization. Biol Plantarum 57:97–104

    Article  CAS  Google Scholar 

  • Kumar SR, Kiruba R, Balamurugan S, Cardoso HG, Arnholdt-Schmitt B, Zakwan A, Sathishkumar R (2014) Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiol Plant 36:21–27

    Article  Google Scholar 

  • Li M-Y, Xu Z-S, Huang Y, Tian C, Wang F, Xiong A-S (2015) Genome wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Mol Genet Genomics 290:2049–2061

    Article  CAS  Google Scholar 

  • Li M-Y, Xu Z-S, Tian C, Huang Y, Wang F, Xiong A-S (2016) Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 6:23101

    Article  CAS  Google Scholar 

  • Ma J, Xu Z-S, Wang F, Xiong A-S (2015) Isolation, purification and characterization of two laccases from carrot (Daucus carota L.) and their response to abiotic and metal ions stresses. Protein J 34:444–452

    Article  CAS  Google Scholar 

  • Maeda K, Kimura S, Demura T, Takeda J, Ozeki Y (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59:739–752

    Article  CAS  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  Google Scholar 

  • Meyer K, Keil M, Naldrett MJ (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett 447:171–178

    Article  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  Google Scholar 

  • Nogales A, Nobre T, Cardoso HG, Muñoz-Sanhueza L, Valadas V, Campos MD, Arnholdt-Schmitt B (2016) Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): an interesting simple sequence repeat in a highly variable intron. Plant Gene 5:49–55

    Article  CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran L-S (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  Google Scholar 

  • Park H, Ko E, Jang E, Park S, Lee J, Ahn Y-J (2013) Expression of DcHsp17.7, a small heat shock protein gene in carrot (Daucus carota L.). Hortic Environ Biotechnol 54:121–127

    Article  CAS  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  Google Scholar 

  • Que Q, Wang G-L, Feng K, Xu Z-S, Wang F, Xiong A-S (2018) Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. Plant Cell Rep. https://doi.org/10.1007/s00299-018-2288-3

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, Gonzalez JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal Behav 4–5:388–393

    Article  Google Scholar 

  • Sánchez-Rangel JC, Jacobo-Velázquez DA, Cisneros-Zevallos L, Benavides J (2014) Primary recovery of bioactive compounds from stressed carrot tissue using aqueous two-phase systems strategies. J Chem Technol Biotechnol 91:144–154

    Article  Google Scholar 

  • Sanità di Toppi L, Vurro E, De Benedictis M, Falasca G, Zanella L, Musetti R, Lenucci MS, Dalessandro G, Altamura MM (2012) A bifasic response to cadmium stress in carrot: early acclimatory mechanisms give way to root collapse further to prolonged metal exposure. Plant Physiol Biochem 58:269–279

    Article  Google Scholar 

  • Satoh S, Sturm A, Fujii T, Chrispeels MJ (1992) cDNA cloning of an extracellular dermal glycoprotein of carrot and its expression in response to wounding. Planta 188:432–438

    Article  CAS  Google Scholar 

  • Schmidhalter U, Oertli JJ (1991) Germination and seedling growth of carrots under salinity and moisture stress. Plant Soil 132:243–251

    Article  Google Scholar 

  • Simon PW, Freeman R, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon Y-S (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables II. Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357

    Chapter  Google Scholar 

  • Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot

    Google Scholar 

  • Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391

    Article  CAS  Google Scholar 

  • SmoleÅ„ A, Sady W (2006) The content of Cd, Cu and Zn in carrot storage roots as related to differentiated nitrogen fertilization and foliar nutrition. Pol J Environ Stud 15:503–509

    Google Scholar 

  • SmoleÅ„ A, Sady W (2007) The effect of nitrogen fertilizer form and foliar application on Cd, Cu and Zn concentrations in carrot. Folia Hortic 19:87–96

    Google Scholar 

  • Song N-H, Ahn Y-J (2010) DcHsp17.7, a small heat shock protein from carrot, is upregulated under cold stress and enhances cold tolerance by functioning as a molecular chaperone. HortScience 45:469–474

    Article  Google Scholar 

  • Song N-H, Ahn Y-J (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28:698–704

    Article  CAS  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  Google Scholar 

  • Tabor G, Yesuf M, Haile M, Kebede G, Tilahun S (2016) Performance of some Asian carrot (Daucus carota L. ssp. sativa Hoffm.) cultivars under Ethiopian conditions: carrot and seed yields. Sci Hortic 207:176–182

    Article  Google Scholar 

  • Wang H, Ou CG, Zhuang FY, Ma ZG (2014) The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Mol Breeding 34:2065–2079

    Article  CAS  Google Scholar 

  • Zheng R-L, Li H-F, Jiang R-F, Zhang F-S (2008) Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil. Bull Environ Contam Toxicol 81:75–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Polish Ministry of Science and Higher Education fund for statutory activities for the University of Agriculture in Krakow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Grzebelus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzebelus, D. (2019). Genetics and Genomics of Carrot Abiotic Stress. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_19

Download citation

Publish with us

Policies and ethics