Skip to main content

Genetics and Genomics of Carrot Biotic Stress

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Carrot (Daucus carota ssp. sativus) production can be affected by a wide range of pests and pathogens. At least five diseases of carrot are caused by bacterial pathogens, 36 by fungal and oomycete pathogens, two by phytoplasmas, and 13 by viruses; and seven genera of nematodes and two genera of parasitic plants affect carrot. In addition, numerous insect and mite pests can cause losses. There have been extensive efforts to select carrot cultivars with partial or complete resistance to many of these pathogens and pests, and to identify wild species with resistance to specific biotic stresses for introgression into breeding populations and commercial cultivars. For some pathogens and pests, significant advances have been made at identifying resistance and mapping that resistance to the carrot genome. For others, resistance has been identified, but the genetic basis is yet to be determined. For a majority of these diverse stresses, however, there has been little success at identifying highly effective resistance and understanding the genetic basis of resistance. The diversity of stresses as well as interactions among these pests and pathogens can complicate efforts to develop cultivars with resistance to all key biotic stresses in a region that also meet market and consumer expectations. New approaches to identifying resistant material and speeding traditional breeding are being developed with molecular breeding tools, including simple sequence repeat markers and deep-coverage libraries of the carrot genome. These valuable genomic resources will enhance efforts to identify and breed for resistance to carrot pests and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie K, Finch HC (1976) Powdery mildew of carrot in California. Plant Dis Report 60:780–781

    Google Scholar 

  • Aegerter BJ (2002) Powdery mildew. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 23–24

    Google Scholar 

  • Ali A, Matthews WC, Cavagnaro PF, Iorizzo M, Roberts PA, Simon PW (2014) Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J Hered 105:288–291

    Article  CAS  PubMed  Google Scholar 

  • Amirov BM, Amirova ZS, Manabaeva UA, Zhasybaeva KR (2014) Carrot breeding for Alternaria leaf blight resistance. Acta Hortic 1053:223–226

    Article  Google Scholar 

  • Angel FF, Gabelman WH (1968) Inheritance of resistance in carrot Daucus carota var sativa to leaf spot fungus Cercospora carotae. Am Soc Hortic Sci 93:434

    Google Scholar 

  • Arbizu CI, Tas PM, Simon PW, Spooner DM (2017) Phylogenetic prediction of Alternaria leaf blight resistance in wild and cultivated species of carrots. Crop Sci 57:2645–2653

    Article  Google Scholar 

  • Baranski R, Krämer R, Klocke E (2006) A laboratory leaf assay of carrot susceptibility to Botrytis cinerea. J Phytopathol 154:637–640

    Article  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2007) Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence microbial factor 3 (MF3) gene. Physiol Mol Plant Pathol 71:88–95

    Article  CAS  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    Article  CAS  Google Scholar 

  • Bedlan G (1984) Wichtige krankheiten der karotten. Pflanzenarzt 37:140–142

    Google Scholar 

  • Benard D, Punja ZK (1995) Role of Pythium spp. in the development of cavity spot on carrots in British Columbia. Can J Plant Pathol 17:31–45

    Google Scholar 

  • Ben-Noon E, Shtienberg D, Shlevin E, Dinoor A (2003) Joint action of disease control measures: a case study of Alternaria leaf blight of carrot. Phytopathology 93:1320–1328

    Article  CAS  PubMed  Google Scholar 

  • Biniek A, Tylkowska K (1987) Germination and mycoflora of carrot seeds treated with thiram and conditioned in polyethylene glycol (PEG 6000). Acta Hortic 215:225–230

    Article  Google Scholar 

  • Blomquist CL (2002) Aster yellows and beet leafhopper-transmitted virescence agent yellows. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 58–59

    Google Scholar 

  • Boedo C, Le Clerc V, Briard M et al (2008) Impact of carrot resistance on development of the Alternaria leaf blight pathogen (Alternaria dauci). Eur J Plant Pathol 121:55–66

    Article  Google Scholar 

  • Boedo C, Berruyer R, Lecomte M et al (2010) Evaluation of different methods for the characterization of carrot resistance to the Alternaria leaf blight pathogen (Alternaria dauci) revealed two qualitatively different resistances. Plant Pathol 59:368–375

    Article  CAS  Google Scholar 

  • Boerema GH, Dorenbosch MMJ, Van Kesteren HA (1963) Some notable fungus infections. II. Jaarboek 1962. Versl Plziekt Dienst Wageningen (Rev Appl Mycol 43:2185c, 1964)

    Google Scholar 

  • Boiteux LS, Della Vecchia PT, Reifschneider FJB (1993) Heritability estimate for resistance to Alternaria dauci in carrot. Plant Breeding 110:165–167

    Article  Google Scholar 

  • Boiteux LS, Hyman JR, Bach IC et al (2004) Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37–44

    Article  CAS  Google Scholar 

  • Boivon G (1994) Aster leafhopper. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. Canadian Phytopathological Society, Guelph, pp 76–77

    Google Scholar 

  • Bonnet A (1977) Resistance a l’Oidium. INRA Stat. d’Amelior. Plantes Maraicheres, pp 33–35

    Google Scholar 

  • Bonnet A (1983) Daucus carota L. subsp. dentatus Bertol., géniteur de résistance à l’oïdium pour l’amélioration de la carotte cultivée. Agronomie 3:33–38

    Article  Google Scholar 

  • Bourgeois G, Brodeur C, Kushalappa A (1998) Effet de la brûlure cercosporéenne, causée par le Cercospora carotae, sur le développement, la croissance et le rendement de la carotte. Phytoprotection 79:9–19

    Article  Google Scholar 

  • Bowen RM, Heale JB (1987) Resistance in carrot root tissue. Physiol Mol Plant Pathol 30:55–66

    Article  CAS  Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beih Nova Hedwigia 89:1–700

    Google Scholar 

  • Breton D, Béasse C, Montfort F, Villeneuve F (2003) Focus on the recent evolution of soil-borne diseases of carrot in France. In: Proceedings of the 30th international carrot conference, Muskegon, 7–10 Sept 2003

    Google Scholar 

  • Bridge J, Starr JL (2007) Plant nematodes of agricultural importance: a colour handbook. CRC Press, London, p 152

    Book  Google Scholar 

  • Browne GT (2002) Phytophthora root rot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 37–38

    Google Scholar 

  • Campion C, Vian B, Nicole M, Rouxel FA (1988) A comparative study of carrot root tissue colonization and cell wall degradation by Pythium violae and Pythium ultimum, two pathogens responsible for cavity spot. Can J Microbiol 44:221–230

    Article  Google Scholar 

  • Carisse O, Kushalappa AC (1990) Development of an infection model for Cercospora carotae on carrot based on temperature and leaf wetness duration. Phytopathology 80:1233–1238

    Article  Google Scholar 

  • Carisse O, Kushalappa AC (1992) Influence of interrupted wet periods, relative humidity, and temperature on infection of carrots by Cercospora carotae. Phytopathology 82:602–606

    Article  Google Scholar 

  • Carvalho AD, Silva GO, Pereira RB, Pinheiro JB (2015) Productivity and tolerance to the leaf blight disease of hybrid and open-pollinated carrot cultivars. Hortic Bras 33:299–304

    Article  Google Scholar 

  • Cavagnaro PF, Chung SM, Szklarczyk M et al (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S et al (2011) Microsatellite isolation and marker development in carrot—genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom 12:386

    Article  CAS  Google Scholar 

  • Charchar JM, Eisenback JD, Vieira JV, De N, Fonseca-Boiteux ME, Boiteux LS (2009) Meloidogyne polycephannulata n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing carrot in Brazil. J Nematol 41:174–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah L-H, Page BBC (1999) Epidemiology and control of violet root rot of carrots. In: Proceedings of the 52nd N.Z. plant protection conference. New Zealand Institute for Crop and Food Research Limited, Palmerston North, pp 157–161

    Google Scholar 

  • Chen TW, Wu WS (1999) Biological control of carrot black rot. J Phytopathol 147:99–104

    Article  Google Scholar 

  • Christianson CE, Jones SS, du Toit LJ (2015) Screening carrot germplasm for resistance to Xanthomonas hortorum pv. carotae. HortScience 50:341–350

    Article  Google Scholar 

  • Cirulli M (1975) The powdery mildew of parsley caused by Leveillula lanuginosa (Fuck.) Golovin. Phytopathol Mediterr 14:94–99

    Google Scholar 

  • Cole RA (1985) Relationship between the concentration of chlorogenic acid in carrot roots and the incidence of carrot fly larval damage. Ann Appl Biol 106:211–217

    Article  CAS  Google Scholar 

  • Cooper C, Isaac S, Jones MG, Crowther T, Smith BM, Collin HA (2004) Morphological and biochemical response of carrots to Pythium violae, causative agent of cavity spot. Physiol Mol Plant Pathol 64:27–35

    Article  CAS  Google Scholar 

  • Cooper C, Crowther T, Smith BM, Isaac S, Collin HA (2006) Assessment of the response of carrot somaclones to Pythium violae, causal agent of cavity spot. Plant Pathol 55:427–432

    Article  Google Scholar 

  • Courtial J, Hamama L, Helesbeux JJ et al (2018) Aldaulactone—an original phytotoxic secondary metabolite involved in the aggressiveness of Alternaria dauci on carrot. Front Plant Sci 9:1–29

    Article  Google Scholar 

  • Cunnington JH, Watson A, Liberato JR, Jones RH (2008) First record of powdery mildew on carrots in Australia. Australas Plant Dis Notes 3:38–41

    Article  Google Scholar 

  • Cwalina-Ambroziak B, Amarowicz R, Glosek M, Janiak M (2014) Changes in the concentrations of phenolic acids in carrot plants inoculated with Alternaria radicina Meier, Drechsler & Eddy. Acta Sci Pol Hortorum Cultus 13:97–108

    Google Scholar 

  • Dalton LP, Epton HAS, Bradshaw NJ (1981) The susceptibility of modern carrot cultivars to violet root rot caused by Helicobasidium purpureum. J Hortic Sci 56:95–96

    Article  Google Scholar 

  • Davis RM, Raid RN (eds) (2002) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, p 75

    Google Scholar 

  • Degen T, Städler E, Ellis PR (1999a) Host-plant susceptibility to the carrot fly, Psila rosae. I. Acceptability of various host species to ovipositing females. Ann Appl Biol 134:1–11

    Article  Google Scholar 

  • Degen T, Städler E, Ellis PR (1999b) Host-plant susceptibility to carrot fly. II. Suitability of various hosts. Ann Appl Biol 134:27–34

    Article  Google Scholar 

  • Degen T, Städler E, Ellis PR (1999c) Host-plant susceptibility to the carrot fly. III. The role of oviposition preferences. Ann Appl Biol 134:13–26

    Article  Google Scholar 

  • du Toit LJ, Derie ML (2008) Effect of powdery mildew on seed yield and quality in a carrot seed crop, 2006–2007. Plant Dis Manage Rep 2:V007

    Google Scholar 

  • du Toit LJ, Crowe FJ, Derie ML, Simmons RB, Pelter GQ (2005) Bacterial blight in carrot seed crops in the Pacific Northwest. Plant Dis 89:896–907

    Article  PubMed  Google Scholar 

  • du Toit LJ, Derie ML, Wohleb CH (2009) Effect of powdery mildew on seed yield and quality in a carrot seed crop, 2007–2008. Plant Dis Manage Rep 3:V136

    Google Scholar 

  • Dufault CP, Coaker TH (1987) Biology and control of the farrot fly, Psila rosae (F.). Agric Zool Rev 2:97–134

    Google Scholar 

  • Dugdale LJ, Mortimer AM, Isaac S, Collin HA (2000) Disease response of carrot and carrot somaclones to Alternaria dauci. Plant Pathol 49:57–67

    Article  CAS  Google Scholar 

  • Dunn JA (1970) The susceptibility of varieties of carrot to attack by the aphid, Cavariella aegopodii (Scop.). Ann Appl Biol 66:301–312

    Article  Google Scholar 

  • Ellis PR (1999) The identification and exploitation of resistance in carrots and wild Umbelliferae to the carrot fly, Psila rosae (F.). Integr Pest Manage Rev 4:259–268

    Article  Google Scholar 

  • Ellis PR, Hardman JA (1981) The consistency of the resistance of eight carrot cultivars to carrot fly attack at several centres in Europe. Ann Appl Biol 98:491–497

    Article  Google Scholar 

  • Ellis PR, Wheatley GA, Hardman JA (1978) Preliminary studies of carrot susceptibility to carrot fly attack. Ann Appl Biol 88:159–170

    Article  Google Scholar 

  • Ellis PR, Saw PL, Crowther TC (1991) Development of carrot inbreds with resistance to carrot fly using a single seed descent programme. Ann Appl Biol 119:349–357

    Article  Google Scholar 

  • Elnagar S, Murant AF (1978) Relations of carrot red leaf and carrot mottle viruses with their aphid vector, Cavariella aegopodil. Ann Appl Biol 89:237–244

    Article  Google Scholar 

  • Endo RM, Colt WM (1974) Anatomy, cytology and physiology of infection by Pythium. Proc Am Phytopathol Soc 1:215–223

    Google Scholar 

  • Farrar JJ (2002) Soft rot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 14–15

    Google Scholar 

  • Farrar JJ, Pryor BM, Davis RM (2004) Alternaria diseases of carrot. Plant Dis 88:776–784

    Article  PubMed  Google Scholar 

  • Gabelman WH, Goldman IL, Breitbach DW (1994) Evaluation and selection for resistance to aster yellows in carrot (Daucus carota L.). J Am Soc Hort Sci 119:1293–1297

    Article  Google Scholar 

  • Garrett SD (1949) A study of violet root rot, 2. Effect of substratum on survival of Helicobasidium purpureum colonies in the soil. Trans Br Mycol Soc 32:217–223

    Article  CAS  Google Scholar 

  • Garrod B, Lewis BG, Coxon DT (1978) Cis-heptadeca-1,9-diene-4,6-diyne-3,8-diol, an antifungal polyacetylene from carrot root tissue. Physiol Plant Pathol 13:241–246

    Article  CAS  Google Scholar 

  • Garrod B, Lewis BG, Brittain MM, Davies WP (1982) Studies on the contribution of lignin and suberin to the impedece of wounded carrot root tissue to fungal invasion. New Phytol 90:99–108

    Article  Google Scholar 

  • Geary JR, Wall CJ (1976) New or uncommon plant diseases and pests. Plant Pathol 25:165

    Article  Google Scholar 

  • Glawe DA, Pelter GQ, du Toit LJ (2005) First report of powdery mildew of carrot and parsley caused by Erysiphe heraclei in Washington State. Online. Plant Health Prog. https://doi.org/10.1094/php-2005-0114-01-hn

    Article  Google Scholar 

  • Goodliffe JP, Heale JB (1975) Incipient infections caused by Botrytis cinerea in carrots entering storage. Ann App Biol 8:243–246

    Article  Google Scholar 

  • Grisham MP, Anderson NA (1983) Pathogenicity and host specificity of Rhizoctonia solani isolated from carrots. Phypathology 73:1564–1569

    Article  Google Scholar 

  • Grogan RG, Snyder WC (1952) The occurrence and phytopathological effects of Stemphylium radicinum on carrots in California. Phytopathology 42:215–218

    Google Scholar 

  • Groom MR, Perry DA (1985) Induction of “cavity spot-like” lesions on roots of Daucus carota by Pythium violae. Trans Br Mycol Soc 84:755–757

    Article  Google Scholar 

  • Grzebelus E, Kruk M, Macko-Podgorni A, Grzebelus D (2013) Response of carrot protoplasts and protoplast-derived aggregates to selection using a fungal culture filtrate of Alternaria radicina. Plant Cell Tissue Organ Cult 115:209–222

    Article  CAS  Google Scholar 

  • Guba EF, Young RE, Ci T (1961) Cavity spot disease of carrot and parsnip roots. Plant Dis Report 45:102–105

    Google Scholar 

  • Guerin PM, Ryan MF (1983) Relationship between root volatiles of some carrot cultivars and their resistance to the carrot fly, Psila rosae. Field experiments assessment of larval damage to carrots. Entomol Exp Appl 36:217–224

    Article  Google Scholar 

  • Guerin PM, Stadler E (1984) Carrot fly cultivar preferences: some influencing factors. Ecol Entomol 9:413–420

    Article  Google Scholar 

  • Guerin PM, Visser JH (1980) Electroantennogram responses of the carrot fly, Psila rosae, to volatile plant components. Physiol Entomol 5:111–119

    Article  CAS  Google Scholar 

  • Guerin PM, Städler E, Buser HR (1983) Identication of host plant attractants for the carrot fly, Psila rosae. J Chem Ecol 9:843–861

    Article  CAS  PubMed  Google Scholar 

  • Guérin L, Briard M, Rouxel F (1994) Biochemical characterization of Pythium spp. involved in cavity spot of carrots in France. Ann Appl Biol 125:255–265

    Article  Google Scholar 

  • Guérin L, Benhamou N, Rouxel F (1998) Ultrastructural and cytochemical investigation of pathogen development and host reaction in susceptible and partially resistant carrot roots infected by Pythium violae, the major causal agent of cavity spot. Eur J Plant Pathol 104:653–655

    Article  Google Scholar 

  • Gugino BK, Carroll JE, Widmer TL, Chen P, Abawi GS (2007) Field evaluation of carrot cultivars for susceptibility to fungal leaf blight diseases in New York. Crop Prot 26:709–714

    Article  Google Scholar 

  • Gurkin RS, Jenkins SF (1985) Influence of cultural practices, fungicides, and inoculum placement on southern blight and Rhizoctonia crown rot of carrot. Plant Dis 69:477–481

    Google Scholar 

  • Hammarlund C (1925) Zur genetik, biologie und physiologie einiger Erysiphaceen. Hereditas 6:1–126

    Article  Google Scholar 

  • Hardman JA, Ellis PR (1982) An investigation of the host range of the carrot fly. Ann Appl Biol 100:1–9

    Article  Google Scholar 

  • Ho HH (1983) Phytophthora porri from stored carrots in Alberta. Mycologia 75:747–751

    Article  Google Scholar 

  • Howard RJ, Williams PH (1976) Methods for detecting resistance to Pythium and Rhizoctonia root diseases in seedling carrots. Plant Dis Report 60:151–156

    Google Scholar 

  • Howell WE, Mink GI (1977) The role of weed hosts, volunteer carrots, and overlapping growing seasons in the epidemiology of carrot thin leaf and carrot motley dwarf viruses in central Washington. Plant Dis Report 61:217–222

    Google Scholar 

  • Huang SP (1986) Penetration, development, reproduction, and sex ratio of Meloidogyne javanica in three carrot cultivars. J Nematol 18:408–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SP, Vecchia PT, Ferreira PE (1986) Varietal response and estimates of heritability of resistance to Meloidogyne javanica in carrots. J Nematol 18:496–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Janse JD (1988) Streptomyces species identified as the cause of carrot scab. Neth J Plant Pathol 94:303–306

    Google Scholar 

  • Johnston LF, Palmer GK (1985) Symptom variability and selection for reduced severity of cotton seedling disease caused by Pythium ultimum. Plant Dis Report 52:209–212

    Google Scholar 

  • Jones RAC (2005) Further studies on Carrot virus Y: hosts, symptomatology, search for resistance, and tests for seed transmissibility. Austral J Agric Res 56:859–868

    Article  Google Scholar 

  • Kainulainen P, Nissinen A, Piirainen A, Tiilikkala K, Holopainen JK (2002) Essential oil composition in leaves of carrot varieties and preference of specialist and generalist sucking insect herbivores. Agric Forest Entomol 4:211–216

    Article  Google Scholar 

  • Karkleliene R, Radzevicius A, Dambrauskiene E, Surviliene E, Bobinas C, Duchovskiene L, Kavaliauskaite D, Bundiniene O (2012) Root yield, quality and disease resistance of organically grown carrot (Daucus sativus Röhl.) hybrids and cultivars. Žemdirbystė Agric 99:393–398

    Google Scholar 

  • Kinsella MN (1966) Vegetable patch. J Agric Vict Dept Agric 64:468

    Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klisiewicz JM (1968) Relation of Pythium spp. to root rot and damping-off of safflower. Phytopathology 58:1384–1386

    Google Scholar 

  • Koike ST, Saenz GS (1994) Occurrence of powdery mildew on parsley in California. Plant Dis 78:1219

    Article  Google Scholar 

  • Koike ST, Saenz GS (1997) First report of powdery mildew caused by Erysiphe heraclei on celery in North America. Plant Dis 81:231

    Article  CAS  PubMed  Google Scholar 

  • Koike ST, Nuñez JJ, Falk BW (2002) Carrot motley dwarf. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 51–52

    Google Scholar 

  • Kora C, McDonald MR, Boland GJ (2003) Sclerotinia rot of carrot. Plant Dis 87:456–470

    Article  PubMed  Google Scholar 

  • Kordowska-Wiater M, Wagner A, Hetman B (2012) Efficacy of Candida melibiosica for control of post-harvest fungal diseases of carrot (Daucus carota L.). Acta Sci Pol Hortorum Cultus 11:55–65

    Google Scholar 

  • Koutouan C, Le Clerc V, Baltenweck R, Claudel P, Walter D et al (2018) Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci Rep 8:13746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1985) Partial purification and characterization of elicitors for 6-methoxymellein production in cultures carrot cells. Physiol Plant Pathol 27:209–217

    Article  CAS  Google Scholar 

  • Lamb KP (1953) Observations on yield and varietal susceptibility of some carrot varieties to insect attack in the field. New Zeal J Sci Technol Sect A 34:351

    Google Scholar 

  • Langenberg WJ, Sutton JC, Gillespie TJ (1977) Relation of weather variables and periodicities of airborne spores of Alternaria dauci. Phytopathology 67:879–883

    Article  Google Scholar 

  • Latham LJ, Jones RAC (2004) Carrot virus Y: symptoms, losses, incidence, epidemiology and control. Virus Res 100:89–99

    Article  CAS  PubMed  Google Scholar 

  • Le Clerc V, Pawelec A, Birolleau-Touchard C, Suel A, Briard M (2009) Genetic architecture of factors underlying partial resistance to Alternaria leaf blight in carrot. Theor Appl Genet 118:1251–1259

    Article  PubMed  Google Scholar 

  • Le Clerc V, Suel A, Pawelec A, Marques S, Huet S, Lecomte M, Poupard P, Briard M (2015a) Is there variety × isolate interaction in the polygenic quantitative resistance of carrot to Alternaria dauci? Euphytica 202:235–243

    Article  Google Scholar 

  • Le Clerc V, Marques S, Suel A, Huet S, Hamama L, Voisine L, Auperpin E, Jourdan M, Barrot L, Prieur R, Briard M (2015b) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theor Appl Genet 128:2177–2187

    Article  PubMed  Google Scholar 

  • Lebeda A (1985). Response of certain carrot species (Daucus carota) to artificial inoculation by Erwinia carotovora spp. carotovora. In: Eucarpia meeting on breeding of root vegetables, Olomouc, 6–9 Sept 1985, pp 82–88

    Google Scholar 

  • Lebeda A, Coufal J (1985). Relationship between virus infection symptoms, carrot (Daucus carota) root quality and seed yield. In: Eucarpia meeting on breeding of root vegetables, Olomouc, 6–9 Sept 1985, pp 107–117

    Google Scholar 

  • Lebeda A, Coufal J (1987) Evaluation of susceptibility of Daucus carota varieties to natural infection with Erysiphe heraclei. Arch Züchtungsforsch Berlin 17:73–76

    Google Scholar 

  • Lebeda A, Coufal J, Kvasnička P (1988) Evaluation of field resistance of Daucus carota cultivars to Cercospora carotae (carrot leaf spot). Euphytica 39:285–288

    Article  Google Scholar 

  • Lecomte M, Berruyer R, Hamama L, Boedo C, Hudhomme P, Bersihand S, Arul J, N’Guyen G, Gatto J, Guilet D, Richomme P, Simoneau P, Briard M, Le Clerc V, Poupard P (2012) Inhibitory effects of the carrot metabolites 6-methoxymellein and falcarindiol on development of the fungal leaf blight pathogen Alternaria dauci. Physiol Mol Plant Pathol 80:58–67

    Article  CAS  Google Scholar 

  • Lecomte M, Hamama L, Voisine L, Gatto J, Hélesbeux JJ, Séraphin D, Pena-Rodriguez L, Richomme P, Boedo C, Yovanopoulos C, Gyomlai M, Briard M, Simoneau P, Poupard P, Berruyer R (2014) Partial resistance of carrot to Alternaria dauci correlates with in vitro cultured carrot cell resistance to fungal exudates. PLoS One 9(7)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee I-M, Bottner KD, Munyaneza JE, Davis RE, Crosslin JM, du Toit LJ, Crosby T (2006) Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington State. Plant Dis 90:989–993

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Cristorfori G, van Steenis R, Verpoorte R, Klinkhamer PGL (2013) An eco-metabolomic study of host plant resistance to western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93:63–70

    Article  CAS  PubMed  Google Scholar 

  • Leyronas C, Troulet C, Duffaud M et al (2018) First report of Sclerotinia subarctica in France detected with a rapid PCR-based test. Can J Plant Pathol 40:248–253

    Article  CAS  Google Scholar 

  • Marras F (1962) Intorno ad Erysiphe umbelliferarum de Bary parasitta della carota, del finocchio e del prezzemolo in Sardegna. Studi Sassaressi Sez III 9, 12 pp. (Rev Appl Mycol 43:635, 1964)

    Google Scholar 

  • Maude RB (1966) Studies on the etiology of black rot, Stemphylium radicinum (Meier, Drechsl. & Eddy) Neerg., and leaf blight, Alternaria dauci (KuHn) Groves & Skolko, on carrot crops; and on fungicide control of their seed borne infection phases. Ann Appl Biol 57:83–93

    Article  Google Scholar 

  • McDonald MR (1994a) Bacterial soft rot. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. Canadian Phytopathological Society, Guelph, p 62

    Google Scholar 

  • McDonald MR (1994b) Cavity spot of carrot (Pythium spp.): etiology, epidemiology and control. PhD dissertation, University of Guelph, Ontario, 314 pp

    Google Scholar 

  • McDonald MR (1994c) Crater rot. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. Canadian Phytopathological Society, Guelph, p 68

    Google Scholar 

  • McDonald MR (1994d) Rubbery brown rot. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. Canadian Phytopathological Society, Guelph, pp 71–72

    Google Scholar 

  • McDonald MR (1994e) Violet root rot. In: Howard RJ, Garland JA, Seaman WL (eds) Diseases and pests of vegetable crops in Canada. Canadian Phytopathological Society, Guelph, p 73

    Google Scholar 

  • McDonald MR (2002) Cavity spot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 27–29

    Google Scholar 

  • McDonald MR, van der Kooi K, Simon P (2017) Evaluation of carrot breeding lines for susceptibility to cavity spot, 2017. In: Muck crops research station annual report, University of Guelph, Ontario, 6 pp. https://www.uoguelph.ca/muckcrop/pdfs/Muck%20Vegetable%20Cultivar%20Trial%20&%20Research%20Report%202017%20Complete.pdf. Accessed Aug 2018

  • Meier FC, Drechsler C, Eddy ED (1922) Black rot of carrots caused by Alternaria radicina n. sp. Phytopathology 12:157–168

    Google Scholar 

  • Mercier J, Kuć J (1996) Induced systemic resistance to Cercospora leaf spot of carrot by inoculation with Cercospora carotae. J Phytopathol 144:75–77

    Article  Google Scholar 

  • Mercier J, Roussel D, Charles MT, Arul J (2000) Systemic and local responses associated with UV- and pathogen-induced resistance to Botrytis cinerea in stored carrot. Phytopathology 90:3–8

    Article  Google Scholar 

  • Michalik B, Ślęczek S (1997) Evaluation of Daucus carota germplasm for tolerance to Erwinia carotovora. J Appl Genet 38A:86–90

    Google Scholar 

  • Michalik B, Wiech K (2000) Differences in the resistance of carrot lines and cultivars to carrot fly [Psila rosae (Fabr.)] attack. Folia Hortic 12:43–51

    Google Scholar 

  • Michalik B, Simon P, Gabelman WH (1992) Assessing susceptibility of carrot roots to bacterial soft rot. HortScience 27:1020–1022

    Article  Google Scholar 

  • Mildenhall JP, Williams PH (1970) Rhizoctonia crown rot and cavity spot of muck-grown carrots. Phytopathology 60:887–890

    Article  Google Scholar 

  • Milosavljević A, Pfaf-Dolovac E, Mitrović M, Jović J, Toševski I, Duduk N, Trkulja N (2014) First rport of Cercospora apii, causal agent of Cercospora early blight of celery, in Serbia. Plant Dis 98:1157

    Article  PubMed  Google Scholar 

  • Montfort F, Rouxel F (1988) La maladie de la “tache” de la carotte due a Pythium violae Chesters et Hickman: donnees symptomatoloiques et etiologiques. Agronomie 8:701–706

    Article  Google Scholar 

  • Moran J, van Rijswijk B, Traicevski V, Kitajima E, Mackenzie AM, Gibbs AJ (2002) Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia. Arch Virol 147:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Murant AF, Spence N (2002) Parsnip yellow fleck. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 56–57

    Google Scholar 

  • National Institute of Agricultural Botany (1991) Vegetable growers leaflet no. 5. N.T.A.B., Cambridge

    Google Scholar 

  • Nehlin G, Valterova I, Borg-Karlson A-K (1996) Monoterpenes released from Apiaceae and the egg-laying preferences of the carrot psyllid, Trioza apicalis. Entomol Exp Appl 80:83–86

    Article  CAS  Google Scholar 

  • Nuñez JJ, Davis RM (2016) Diseases of carrot (Daucus carota L. subsp. sativus (Hoffm.) Arcang.). Common names of plant diseases. American Phytopathological Society, St. Paul. http://www.apsnet.org/publications/commonnames/Pages/Carrot.aspx. Accessed Oct 2018

  • Nuñez JJ, Westphal A (2002) Damping-off. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 31–33

    Google Scholar 

  • Ojaghian MR, Wang Q, Li X et al (2016) Inhibitory effect and enzymatic analysis of e-cinnamaldehyde against Sclerotinia carrot rot. Pestic Biochem Physiol 127:8–14

    Article  CAS  PubMed  Google Scholar 

  • Painter R (1951) Insect resistance in crop plants. Macmillan Company, New York, p 520

    Google Scholar 

  • Palti J (1975) Erysiphaceae affecting umbelliferous crops, with special reference to carrot, in Israel. Phytopathol Mediterr 14:87–93

    Google Scholar 

  • Parsons J, Matthews W, Iorizzo M, Roberts P, Simon PW (2015) Meloidogyne incognita nematode resistance QTL in carrot. Mol Breeding 35:114

    Article  CAS  Google Scholar 

  • Pawelec A, Dubourg C, Briard M (2006) Evaluation of carrot resistance to Alternaria leaf blight in controlled environments. Plant Pathol 55:68–72

    Article  Google Scholar 

  • Pereira RB, Carvalho ADF, Pinheiro JB, Silva GO, Vieira JV (2012) Resistência de populações de cenoura à queima-das-folhas com diferentes níveis de germoplasma tropical. Hortic Bras 30:489–493

    Article  Google Scholar 

  • Perry DA, Harrison JG (1979) Cavity spot of carrots. I. Symptomology and calcium involvement. Ann Appl Biol 93:101–108

    Article  CAS  Google Scholar 

  • Pfleger FL, Harman GE, Marx GA (1974) Bacterial blight of carrots: interaction of temperature, light, and inoculation procedures on disease development of various carrot cultivars. Phytopathology 64:746–749

    Article  Google Scholar 

  • Phillips JA, Kelman A (1982) Direct fluorescent antibody stain procedure applied to insect transmission of Erwinia carotovora. Phytopathology 72:898–901

    Article  Google Scholar 

  • Pinheiro JB, De Mendonça JL, De Santana JP (2011) Reaction of wild Solanaceae to Meloidogyne incognita race 1 and M. javanica. Acta Hortic 917:237–241

    Article  Google Scholar 

  • Pryor B, Davis RM, Gilbertson RL (1994) Detection and eradication of Alternaria radicina on carrot seed. Plant Dis 78:452–456

    Article  CAS  Google Scholar 

  • Pryor B, Davis RM, Gilbertson RL (1998) Detection of soilborne Alternaria radicina and its occurrence in California carrot fields. Plant Dis 82:891–895

    Article  CAS  PubMed  Google Scholar 

  • Pryor B, Davis RM, Gilbertson RL (2000) A toothpick inoculation method for evaluating carrot cultivars for resistance to Alternaria radicina. HortScience 35:1099–1102

    Article  Google Scholar 

  • Punja JK (1987) Mycelial growth and pathogenesis by Rhizotonia carotae on carrot. Can J Plant Pathol 9:24–31

    Article  Google Scholar 

  • Punja JK (2002a) Crater rot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, p 42

    Google Scholar 

  • Punja ZK (2002b) Crown rot of carrot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, p 31

    Google Scholar 

  • Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    Article  CAS  Google Scholar 

  • Punja ZK, Chen WP (2004) Transgenic carrots expressing enhanced tolerance to herbicide and fungal pathogen infection. Acta Hortic 637:295–302

    Article  CAS  Google Scholar 

  • Punja ZK, McDonald MR (2002) Violet root rot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 40–41

    Google Scholar 

  • Rader WE (1952) Diseases of stored carrots in New York State. N Y (Cornell) Agric Exp Stn Bull 889:35–38

    Google Scholar 

  • Raid RN (2002) Cercospora leaf blight of carrot. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, p 18

    Google Scholar 

  • Roberts PA, Mullens TR (2002) Diseases caused by nematodes. In: Davis RM, Raid RN (eds) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul, pp 45–46

    Google Scholar 

  • Roderick H, Urwin PE, Atkinson HJ (2018) Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnol J 16:520–529

    Article  CAS  PubMed  Google Scholar 

  • Rogers PM, Stevenson WR (2010) Aggressiveness and fungicide sensitivity of Alternaria dauci from cultivated carrot. Plant Dis 94:405–412

    Article  CAS  PubMed  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Diseases, disorders, insects and other pests. In: Carrots and related vegetables umbelliferae. CABI Publishing, New York, pp 173–220

    Google Scholar 

  • Santo GS, Mojtahedi H, Wilson JH (1988) Host-parasite relationship of carrot cultivars and Meloidogyne chitwoodi races and M. hapla. J Nematol 20:555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saude C, Hausbeck MK, Hurtado-Gonzales O, Rippetoe C, Lamour KH (2007) First report of Phytophthora cactorum causing root rot of processing carrots (Daucus carota) in Michigan. Plant Dis 91:459

    Article  CAS  PubMed  Google Scholar 

  • Schoneveld JA (1994) Effect of irrigation on the prevention of scab in carrots. Acta Hortic 354:135–144

    Article  Google Scholar 

  • Scott DR (1970) Lygus bugs feeding on developing carrot seed: plant resistanc to that feeding. J Econ Entomol 63:959–961

    Article  Google Scholar 

  • Scott DR (1977) Selection for lygus bug resistance in carrot. HortScience 12:452

    Google Scholar 

  • Scott DJ, Wenham HT (1972) Occurrence of two seed-borne pathogens, Alternaria radicina and Alternaria dauci, on imported carrot seed in New Zealand. New Zeal J Agr Res 16:247–250

    Article  Google Scholar 

  • Segall RH, Dow AT (1973) Effects of bacterial contamination and refrigerated storage on bacterial soft rot of carrots. Plant Dis Rep 57:896–899

    Google Scholar 

  • Sherf AF, MacNab AA (1986) Carrot. In: Vegetable diseases and their control. In: MacNab AA, Sherf AF (eds) Wiley Interscience Publication, Wiley, New York, pp 138–139

    Google Scholar 

  • Siddiqui ZA, Nesha R, Varshney A (2011) Response of carrot cultivars to Meloidogyne incognita and Pectobacterium carotovorum subsp. carotovorum. J Plant Pathol 93:503–506

    Google Scholar 

  • Sidorova T, Miroshnichenko D (2013) Transgenic carrot expressing thaumatin II gene has enhanced resistance against Fusarium avenaceum. Acta Agric Scand 974:123–130

    Google Scholar 

  • Silva GO, Vieira JV, Vilela MS, Reis A, Boiteux LS (2009) Genetic parameters of the resistance to the leaf blight disease complex in carrot populations. Hortic Bras 27:354–356

    Article  Google Scholar 

  • Simlat M, Stobiecki M, Szklarczyk M (2013) Accumulation of selected phenolics and expression of PAL genes in carrots differing in their susceptibility to carrot fly (Psila rosae F.). Euphytica 190:253–266

    Article  CAS  Google Scholar 

  • Simon PW, Strandberg JO (1998) Diallel analysis of resistance in carrot to Alternaria leaf blight. J Am Soc Hortic Sci 123:412–415

    Article  Google Scholar 

  • Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Kwon Y-S (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Vegetables II. Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357

    Chapter  Google Scholar 

  • Skadow K (1978) Eine objective, rationelle methode der resistenz-prüfing von möhren gegen Erwinia carotovora (Jones) Bergey et al. var. carotovora dye. Arch Phytopathol Pflanzenschutz 14:27–31

    Article  Google Scholar 

  • Smith CM, Chuang W-P (2014) Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manage Sci 70:528–540

    Article  CAS  Google Scholar 

  • Soroker E, Bashan Y, Okon Y (1984) Reproducible induction of cavity spot in carrots and physiological and microbial changes occurring during cavity formation. Soil Biol Biochem 16:541–548

    Article  CAS  Google Scholar 

  • Soteros IJ (1979) Pathogenicity and control of Alternaria radicina and A. dauci in carrots. New Zeal J Agric Res 22:191–196

    Article  Google Scholar 

  • Städler E, Buser HR (1984) Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect. Experientia 40:1157–1159

    Article  Google Scholar 

  • Stein M, Nothnagel T (1995) Some remarks on carrot breeding (Daucus carota sativus Hoffm.). Plant Breeding 114:1–11

    Article  Google Scholar 

  • Stelfox D, Henry AW (1978) Occurrence of rubbery brown rot of stored carrots in Alberta. Can Plant Dis Survey 58:87–91

    Google Scholar 

  • Strandberg JO (1977) Spore production and dispersal of Alternaria dauci. Phytopathology 77:1262

    Article  Google Scholar 

  • Strandberg JO, Bassett MJ, Peterson CE, Berger RD (1972) Sources of resistance to Alternaria dauci. HortScience 7:345

    Google Scholar 

  • Suffert F, Montfort F (2007) Demonstration of secondary infection by Pythium violae in epidemics of carrot cavity spot using root transplantation as a method of soil infestation. Plant Pathol 56:588–594

    Article  Google Scholar 

  • Sweet JB, Lake SE, Wright IR, Priestley RH (1986) Resistance of carrot varieties to cavity spot disease. Aspects Appl Biol 12:235–245

    Google Scholar 

  • Sweet JB, Beale RE, Wright IR (1989). Cavity spot disease in six carrot cultivars treated with a metalaxyl and thiram fungicide. Tests of agrochemicals and cultivars 10. Ann Appl Biol 114:38–39 (Supplement)

    Google Scholar 

  • Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144

    Article  CAS  PubMed  Google Scholar 

  • Tan JAC, Jones MG, Fosu-Nyarko J (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA (1965) Rep Natn Veg Res Stn for 1964, p 70

    Google Scholar 

  • Umiel N, Jacobson R, Globerson D (1975) Pollination of the cultivated carrot (Daucus carota L.) by the wild carrot (D. carota var. maximus) and its implication on commercial seed production. Hassadeh 56:478–480

    Google Scholar 

  • Valterova I, Nehlin G, Borg-Karlson AK (1997) Host plant chemistry and preferences in egg laying Trioza apicalis (Homeoptera, Psylloidea). Biochem Syst Ecol 25:477–491

    Article  Google Scholar 

  • Van Dijk P, Bos L (1985) Viral dieback of carrot and other Umbelliferae caused by the Anthriscus strain of parsnip yellow fleck virus, and its distinction from carrot motley dwarf. Neth J Plant Pathol 91:169–187

    Article  Google Scholar 

  • Vasudeva RS (1963) Report of division of mycology and plant pathology. Sci Rep Agric Res Inst New Delhi 1961:87–100

    Google Scholar 

  • Vieira JV, Dias Casali VW, Milagres JC, Cardoso AA, Regazzi AJ (1991) Heritability and genetic gain for resistance to leaf blight in carrot (Daucus carota L.) populations evaluated at different times after sowing. Rev Bras Genét 14:501–508

    Google Scholar 

  • Vieira JV, Charchar JM, Aragão FAS, Boiteux LS (2003) Heritability and gain from selection for field resistance against multiple root-knot nematode species (Meloidogyne incognita race 1 and M. javanica) in carrot. Euphytica 130:11–16

    Article  Google Scholar 

  • Villeneuve F (2014) Les Maladies: Symptomes et biologie. In: Villeneuve F (ed) La carotte: maladies, ravageurs et protection. CTIFL, Paris, pp 71–131

    Google Scholar 

  • Vivoda E, Davis RM, Nunez JJ, Guerard JP (1991) Factors affecting the development of cavity spot of carrot. Plant Dis 75:519–522

    Article  Google Scholar 

  • Wagenvoort WA, Blok I, Monbarg HFM, Velhuinzen T (1989) Cavity spot of carrot in relation to a Pythium sp. Gartenbauwissenschaft 54:70–73

    Google Scholar 

  • Wally ZK, Punja O (2010) Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta 232:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009a) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009b) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Planta 231:131–142

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Goldman IL (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J Hered 87:119–123

    Article  Google Scholar 

  • Wang F, Long G, Xi W et al (2018) The genome sequence of ‘Kurodagosun’, a major carrot variety in Japan and China, reveals insights into biological research and carrot breeding. Mol Genet Genomics 293:861–871

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM (1985) Isolation and identification of carrot red leaf virus from carrot and dill growing in the Australian Capital Territory. Austral Plant Pathol 14:32–34

    Article  Google Scholar 

  • Waterhouse PM, Murant AF (1983) Further evidence on the nature of the dependence of carrot mottle virus on carrot red leaf virus for transmission by aphids. Ann Appl Biol 103:455–464

    Article  Google Scholar 

  • Watson MT, Falk BW (1994) Ecological and epidemiological factors affecting carrot motley dwarf development in carrots grown in the Salinas Valley of California. Plant Dis 78:477–481

    Article  Google Scholar 

  • Watson MT, Sarjeant EP (1964) The effect of motley dwarf virus on yield of carrots and its transmission in the field by Cavariella aegopodii Scop. Ann Appl Biol 53:77–83

    Article  Google Scholar 

  • Watson MT, Tian T, Estabrook E, Falk BW (1998) A small RNA resembling the beet western yellows luetovirus ST9-associated RNA is a component of the California carrot motley dwarf complex. Phytopathology 88:164–170

    Article  CAS  PubMed  Google Scholar 

  • Wesemael W, Moens M (2008) Quality damage on carrots (Daucus carota L.) caused by the root-knot nematode Meloidogyne chitwoodi. Nematology 10:261–270

    Article  Google Scholar 

  • White NH (1945) Fungal soft-rot of carrots. Tasman J Agric 16:59–60

    Google Scholar 

  • White JG (1988) Studies on the biology and control of cavity spot of carrots. Ann Appl Biol 113:259–268

    Article  Google Scholar 

  • White JG (1991) Curing spotty carrots. Grower 9–10

    Google Scholar 

  • White JG, Dowker BD, Crowther TC (1987) Screening carrot cultivars against Pythium spp. associated with cavity spot. Tests of agrochemicals and cultivars 8. Ann Appl Biol 110 (Supplement)

    Google Scholar 

  • White JG, Dowker BD, Crowther TC, Wakeham AJ (1988) Laboratory screening of carrot cultivars with reported differential field performance for cavity spot to three Pythium spp. Tests of agrochemicals and cultivars 9. Ann Appl Biol 112 (Supplement)

    Google Scholar 

  • Yarger LW, Baker LR (1981) Tolerance of carrot to Meloidogyne hapla. Plant Dis 65:337–339

    Article  Google Scholar 

  • Yunhee S, Park J, Kim YS, Park Y, Kim YH (2014) Screening and histopathological characterization of Korean carrot lines for resistance to the root-knot nematode Meloidogyne incognita. Plant Pathol J 30:75–81

    Article  Google Scholar 

  • Zamski E, Peretz I (1995) Cavity spot of carrots: interactions between the host and pathogen, related to the cell wall. Ann Appl Biol 127:23–32

    Article  Google Scholar 

  • Zhang XY, Hu J, Zhou HY et al (2014) First report of Fusarium oxysporum and F. solani causing Fusarium dry rot of carrot in China. Plant Dis 98:1273

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey J. du Toit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

du Toit, L.J., Le Clerc, V., Briard, M. (2019). Genetics and Genomics of Carrot Biotic Stress. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_18

Download citation

Publish with us

Policies and ethics