Skip to main content

Genetic Engineering of Carrot

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Carrot (Daucus carota) is one of the model species used in research for in vitro plant cell and tissue culture. The development of these techniques has enabled efficient cell and tissue proliferation and somatic embryogenesis under in vitro conditions, thus favoring the use of carrot for elucidating the mechanisms of horizontal gene transfer and gene function. Deployment of genetic engineering techniques has led to the development of carrots with improved traits, enhancing plant production for human health. The first product derived from genetically modified (GM) carrot cells cultured in a bioreactor has been approved for the treatment of human metabolic disease and for commercialization. This chapter describes methods of carrot genetic transformation using both vector and non-vector methods. Furthermore, we present reports of basic research in which carrot was used as a model to elucidate the function of heterologous genes and promoters, revealing selected mechanisms of plant metabolism, including the phenomenon of bacteria to plant gene transfer. Separate sections exemplify modified characteristics of GM carrot, including resistance to pathogens and the biosynthesis of recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: Regulation and involvement in plant development. Plant Cell Tiss Organ Cult 77:89–101

    Article  CAS  Google Scholar 

  • Annon A, Rathore K, Crosby K (2014) Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. In Vitro Cell Dev Biol Plant 50(3):299–306

    Article  CAS  Google Scholar 

  • Arango J, Salazar B, Welsch R, Sarmiento F, Beyer P, Al-Babili S (2010) Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system. Plant Cell Rep 29(6):651–659

    Article  CAS  PubMed  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R (2014) Carotene hydroxylase activity determines the levels of both alpha-carotene and total carotenoids in orange carrots. Plant Cell 26(5):2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environ Pollut 117:329–335

    Article  PubMed  Google Scholar 

  • Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorphenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63:642–651

    Article  PubMed  CAS  Google Scholar 

  • Araujo BS, Oliveira JO, Machado SS, Pletsch M (2004) Comparative studies of the peroxidases from hairy roots of Daucus carota, Ipomoea batatas and Solanum aviculare. Plant Sci 167:1151–1157

    Article  CAS  Google Scholar 

  • Aviv D, Amsellem Z, Gressel J (2002) Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Pest Manag Sci 58:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Carbonera D, Cella R (1991) Transformation of Daucus carota hypocotyls mediated by Agrobacterium tumefaciens. J Genet Breed 45:135–140

    Google Scholar 

  • Ballas N, Zakai N, Loyter A (1987) Transient expression of the plasmid pCaMVCAT in plant protoplasts following transformation with polyethylene glycol. Exp Cell Res 170:228–234

    Article  CAS  PubMed  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2007a) Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence Microbial Factor 3 (MF3) gene. Physiol Mol Plant Pathol 71:88–95

    Article  CAS  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    Article  CAS  Google Scholar 

  • Baranski R, Klocke E, Ryschka U (2007b) Monitoring the expression of green fluorescent protein in carrot. Acta Physiol Plant 27:239–246

    Article  CAS  Google Scholar 

  • Baranski R, Klocke E, Schumann G (2006) Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Rep 25:190–197

    Article  CAS  PubMed  Google Scholar 

  • Bates GW, Carle SA, Piastuch WC (1990) Linear DNA introduction into carrot protoplasts by electroporation undergoes ligation and recircularization. Plant Mol Biol 14:899–908

    Article  CAS  PubMed  Google Scholar 

  • Bates GW, Piastuch W, Riggs CD, Rabussay D (1988) Electroporation for DNA delivery to plant protoplast. Plant Cell Tiss Organ Cult 12:213–218

    Article  CAS  Google Scholar 

  • Bercetche J, Chriqui D, Adam S, David C (1987) Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes (strain 1855, 2659 and 8196) on carrot, pea and tobacco. Plant Sci 52:195–210

    Article  Google Scholar 

  • Boston RS, Becwar MR, Ryan RD, Goldsbrough PB, Larkins BA, Hodges TK (1987) Expression from heterologous promoters in electroporated carrot protoplasts. Plant Physiol 83:742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouche FB, Erlt OT, Muller CP (2002) Neutralizing B cell response in measles. Viral Immunol 15(3):451–471

    Article  CAS  PubMed  Google Scholar 

  • Bouche FB, Marquet-Blouin E, Yanagi Y, Steinmetz A, Muller CP (2003) Neutralising immunogenicity of a polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine 21:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Bouche FB, Steinmetz A, Yanagi Y, Muller CP (2005) Induction of broadly neutralizing antibodies against measles virus mutants using a polyepitope vaccine strategy. Vaccine 23:2074–2077

    Article  CAS  PubMed  Google Scholar 

  • Boulanger F, Berkaloff A, Richaud F (1986) Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids. Plant Mol Biol 6:271–279

    Article  CAS  PubMed  Google Scholar 

  • Brodzik R, Spistin S, Pogrebnyak N, Bandurska K, Portocarrero C, Andryszak K, Koprowski H, Golovkin M (2009) Generation of plant-derived recombinant DTP subunit vaccine. Vaccine 27(28):3730–3734

    Article  CAS  PubMed  Google Scholar 

  • Capone I, Frugis G, Costantino P, Cardarelli M (1994) Expression in different populations of cells of the root meristem is controlled by different domains of the rolB promoter. Plant Mol Biol 25:681–691

    Article  CAS  PubMed  Google Scholar 

  • Capone I, Spanò L, Cardarelli M, Bellincampi D, Petit A, Costantino P (1989) Induction and growth properties of carrot roots with different components of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52

    Article  CAS  PubMed  Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P (1987a) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 207:475–480

    Article  Google Scholar 

  • Cardarelli M, Spanò L, de Paolis A, Mauro ML, Vitali G, Costantino P (1985) Identification of the genetic locus responsible for non–polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391

    Article  CAS  PubMed  Google Scholar 

  • Cardarelli M, Spanò L, Mariotti D, Mauro ML, van Sluys MA, Costantino P (1987b) The role of auxin in hairy root induction. Mol Gen Genet 208:457–463

    Article  CAS  Google Scholar 

  • Chakrabarty B, Ghosal AK, Purkait MK (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membrane Sci 309:209–221

    Article  CAS  Google Scholar 

  • Chen WP, Punja ZK (2002) Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Rep 20:929–935

    Article  CAS  Google Scholar 

  • Chilton MD, Tepfer D, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into plant roots. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deroles S, Smith MAL, Lee C (2002) Factors affecting transformation of cell cultures from three dicotyledonous pigment-producing species using microprojectile bombardment. Plant Cell Tiss Organ Cult 70:69–76

    Article  CAS  Google Scholar 

  • Di Cola A, Poma A, Spanò L (1997) rolB expression pattern in the early stages of carrot somatic embryogenesis. Cell Biol Int 21:595–600

    Article  PubMed  Google Scholar 

  • Dirks R, Sidorov V, Tulmans C (1996) A new protoplast culture system in Daucus carota L. and its application for mutant selection and transformation. Theor Appl Genet 93:809–815

    Article  CAS  PubMed  Google Scholar 

  • Dröge W, Broer I, Puhler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142–151

    Article  PubMed  Google Scholar 

  • ECJ (2018) Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Court of Justice of the EU, case C-528/16. Press release No. 111/18 of 25 July 2018

    Google Scholar 

  • Epstein E, Nissen SJ, Sutter EG (1991) Indole-3-acetic acid and indole-3-butyric acid in tissues of carrot inoculated with Agrobacterium rhizogenes. J Plant Growth Regul 10:97–100

    Article  CAS  Google Scholar 

  • FDA (2012) Elelyso for injection, Approval letter. US Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/022458s000ltr.pdf. Accessed 6 Sept 2018

  • Fründt C, Meyer AD, Ichikawa T, Meins F (1998) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 259:559–568

    Article  PubMed  Google Scholar 

  • Fujii N (1997) Pattern of DNA binding of nuclear proteins to the proximal Agrobacterium rhizogenes rolC promoter is altered during somatic embryogenesis of carrot. Gene 201:55–62

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (1993) Introduction of mRNA to protoplasts using polyethylene glycol. Plant Cell Rep 13:119–122

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gautheret R (1939) Sur la possibilité de réaliser la culture indéfinie des tissues de tubercules de carotte. C R Soc Biol Paris 208:118–120

    Google Scholar 

  • Gerrits MM, van Vliet AH, Kulpers EJ, Kusters JG (2006) Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implication. Lancet Infect Dis 6:699–709

    Article  CAS  PubMed  Google Scholar 

  • Ghabouli M, Bahrami AR, Shahriari FA, Zolala J, Mohammadi A (2013) Studying the efficiency of floral dip method for genetic transformation of apiaceaeplants. J Hort Sci (Agricultural Sciences and Technology) 27(2):139–147

    Google Scholar 

  • Gilbert MO, Zhang YY, Punja ZK (1996) Introduction and expression of chitinase encoding genes in carrot following Agrobacterium-mediated transformation. Vitro Cell Dev Biol Plant 32:171–178

    Article  CAS  Google Scholar 

  • Gladysz K, Baranski R (2003) Attempts to in planta genetic transformation of carrot. Polish J Nat Sci Suppl 1:236–237

    Google Scholar 

  • Glass Z, Lee M, Li Y, Xu Q (2018) Engineering the delivery systems for CRISPR-based genome editing. Trends Biotechnol 36(2):173–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SI, Delapp K, Taiz LB (1992) The use of antisense messenger-RNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell 4:851–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski GA, Barton NW, Pastores G, Dambrosia JM, Banerjee TK, McKee MA, Parker C, Schiffmann R, Hill SC, Brady RO (1995) Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122:33–39

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus E, Szklarczyk M, Baranski R (2012) An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tiss Organ Cult 109(1):101–109

    Article  Google Scholar 

  • Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60(2):207–217

    Article  CAS  PubMed  Google Scholar 

  • Guivarc’h A, Caissard JC, Brown S, Marie D, Dewitte W, Vanonckelen H, Chriqui D (1993) Localization of target-cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root disks. Protoplasma 174:10–18

    Article  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempe J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA-mapping and DNA-sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88:7763–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breed 4:119–127

    Article  CAS  Google Scholar 

  • Hauptmann R, Eschenfeldt WH, English J, Brinkhaus FL (1997) Enhanced carotenoid accumulation in storage organs of genetically engineered plants. The United States Patent No. 5618988

    Google Scholar 

  • Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16:627–632

    Article  CAS  Google Scholar 

  • Higashi K, Daita M, Kobayashi T, Sasaki K, Harada H, Kamada H (1998) Inhibitory conditioning for carrot somatic embryogenesis in high-cell-density cultures. Plant Cell Rep 18:2–6

    Article  CAS  Google Scholar 

  • Imani J, Baltruschat H, Stein E, Jia G, Vogelsberg J, Kogel KH, Hückelhoven R (2006) Expression of barley BAX Inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol Plant Pathol 7:279–284

    Article  CAS  PubMed  Google Scholar 

  • Imani J, Berting A, Nitsche S, Schaefer S, Gerlich WH, Neumann KH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tiss Organ Cult 71:157–164

    Article  CAS  Google Scholar 

  • Ipek A, Ipek M, Simon PW (2006a) Association of reversible inactivation of the maize transposable element Ds with tissue-specific processing of the 35S:TPase transcript in carrot (Daucus carota L.). J Hortic Sci Biotech 81:819–826

    Article  CAS  Google Scholar 

  • Ipek A, Masson P, Simon PW (2006b) Genetic transformation of an Ac/Ds-based transposon tagging system in carrot (Daucus carota L.). Eur J Hortic Sci 71:245–251

    CAS  Google Scholar 

  • Ishige F, Takaichi M, Foster R, Chua NH, Oeda K (1999) A G–box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448

    Article  CAS  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17(4):489–501

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Punja Z (2008) Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46(10):875–883

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Jen GC, Chilton MD (1986) The right border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. Proc Natl Acad Sci USA 83:3895–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung YC, Lee HJ, Yum SS, Soh WY, Cho DY, Auh CK, Lee TK, Soh HC, Kim YS, Lee SC (2005) Drought-inducible but ABA-independent thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep 24:366–373

    Article  CAS  PubMed  Google Scholar 

  • Kalbina I, Wallin A, Lindh I, Engstrom P, Andersson S, Strid K (2011) A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate. Protein Expres Purif 80(2):194–202

    Article  CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. Methods Mol Biol 286:61–78

    CAS  PubMed  Google Scholar 

  • Kim Y-S, Mi-Y Kim, Kim T-G, Yang M-S (2009) Expression and assembly of cholera toxin B subunit (CTB) in transgenic carrot (Daucus carota L.). Mol Biotechnol 41:8–14

    Article  PubMed  CAS  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langridge WHR, Li BJ, Szalay AA (1985) Electric field mediated stable transformation of carrot protoplasts with naked DNA. Plant Cell Rep 4:355–359

    Article  CAS  PubMed  Google Scholar 

  • Limami AM, Sun LY, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacteriumm rhizogenes. Plant Physiol 118:543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindh I, Wallin A, Kalbina I, Sävenstrand H, Engström P, Andersson S, Strid A (2009) Production of the p24 capsid protein from HIV-1 subtype C in Arabidopsis thaliana and Daucus carota using an endoplasmic reticulum-directing SEKDEL sequence in protein expression construct. Protein Expr Purif 66:45–51

    Article  CAS  Google Scholar 

  • Locato V, Balestrazzi A, De Gara L, Carbonera D (2006) Reduced expression of top1β gene induces programmed cell death and alters ascorbate metabolism in Daucus carota cultured cells. J Exp Bot 57:1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Luchakivskaya Yu, Kischenko O, Gerasymenko I, Olevinskaya Z, Simonenko Yu, Spivak M, Kuchuk M (2011) High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep 30:407–415

    Article  CAS  PubMed  Google Scholar 

  • Ma SW, Zhao DL, Yin ZQ, Mukerjee R, Singh B, Qin HY (1997) Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nature Med 3:793–796

    Article  CAS  PubMed  Google Scholar 

  • Maass D, Arango J, Wust F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS ONE 4(7):e6373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)-derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason HS, Ball JM, Shi J-J, Jiang X, Estes MK, Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93:5335–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Goto T, Sakagami Y (2004) Chemical nursing: phytosulfokine improves genetic transformation efficiency by promoting the proliferation of surviving cells on selective media. Plant Cell Rep 23:155–158

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 119:877–878

    Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  CAS  PubMed  Google Scholar 

  • Merfield CN, Hampton JG, Wratten SD, Prapanoppasin P, Yeeransiri P (2010) The effect of plant density on seed yield and quality of carrot (Daucus carota L.). In: McGill CR, Rowarth JS (eds) Seed symposium: seeds for futures. Agronomy Society of New Zealand Special Publication 13(14):75–83

    Google Scholar 

  • Mikschofsky H, Mann G, Broer I (2009) Soil adaptation of transgenic in vitro carrot plantlets. J Agr Sci 147:43–49

    Article  CAS  Google Scholar 

  • Monreal-Escalante E, Govea-Alonso DO, Hernández M, Cervantes J, Salazar-González JA, Romero-Maldonado A, Rosas G, Garate T, Fragoso G, Sciutto E, Rosales-Mendoza S (2016) Towards the development of an oral vaccine against porcine cysticercosis: expression of the protective HP6/TSOL18 antigen in transgenic carrots cells. Planta 243(3):675–685

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neumann E, Schaefer-Riddder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazian M, Sadat Noori SA, Galuszka P, Mortazavian SMM (2017) Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Czech J Genet Plant Breed 53(4):133–143

    Article  CAS  Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. Compt. Rendus Soc. Biol. Lyon 130:1270–1271

    Google Scholar 

  • Noh SA, Lee HS, Huh GH, Oh MJ, Paek KH, Shin JS, Bae JM (2012) A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 21(2):265–278

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Pawlicki N, Sangwan RS, Sangwan-Norreel BS (1992) Factors influencing the Agrobacterium tumefaciens-mediated transformation of carrot (Daucus carota L.). Plant Cell Tissue Org 31:129–139

    Article  CAS  Google Scholar 

  • Peng R-H, Yao Q-H, Xiong A-S, Cheng Z-M, Li Y (2005) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25:124–132

    Article  PubMed  CAS  Google Scholar 

  • Permyakova NV, Zagorskaya AA, Belavin PA, Uvarova EA, Nosareva OV, Nesterov AE, Novikovskaya AA, Zav’yalov EL, Moshkin MP, Deineko EV (2015) Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. Biomed Res Int 2015(2): 1–11

    Article  CAS  Google Scholar 

  • Porceddu A, Falorni A, Ferradini N, Cosentino A, Calcinaro F, Faleri C, Cresti M, Lorenzetti F, Brunetti P, Pezzotti M (1999) Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol Breed 5:553–560

    Article  CAS  Google Scholar 

  • Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    Article  CAS  Google Scholar 

  • Punja ZK, Jayaraj J, Wally O (2007) Carrot. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry: transgenic crops IV, vol 59. Springer, Berlin, pp 277–294

    Google Scholar 

  • Punja ZK, Raharjo SHT (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis 80:999–1005

    Article  CAS  Google Scholar 

  • Rasmussen JO, Rasmussen OS (1993) PEG mediated DNA uptake and transient GUS expression in carrot, rapeseed and soybean protoplasts. Plant Sci 89:199–207

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126:1241–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathus C, Bower R, Birch RG (1993) Effects of promoter, intron and enhancer elements on transient gene-expression in sugarcane and carrot protoplasts. Plant Mol Biol 23:613–618

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Anaya E, Loza-Rubio E, Olivera-Flores MT, Gomez-Lim M (2009) Expression of rabies G protein in carrots (Daucus carrota). Transgenic Res 18:911–919

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solis AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Han Y, Alpuche-Solis AG, Korban SS (2011) Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersina pestis are immunogenic in mice. J Plant Physiol 168:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Olivera-Flores MTD, López-Revilla R, Argullo-Astorga GR, Jimenez-Bremont JF, Garcia-de la Cruz RF, Loyola-Rodriguez JP, Alpuche-Solís AG (2007) Expression of Escherichia coli heat-abile enterotoxin B subunit (LTB) in carrot (Daucus carota L.). Plant Cell Rep 26:969–976

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Tello-Olea MA (2015) Carrot cells: a pioneering platform for biopharmaceuticals production. Mol Biotechnol 57:219–232

    Article  CAS  PubMed  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publ, New York

    Google Scholar 

  • Ryder MH, Tate ME, Kerr A (1985) Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Tech 5:27–37

    Article  CAS  Google Scholar 

  • Schuttelaar (2015) The regulatory status of New Breeding Techniques in countries outside the European Union. Schuttelaar & Partners. Version: June 2015. http://www.nbtplatform.org/background-documents/rep-regulatory-status-of-nbts-oustide-the-eu-june-2015.pdf. Accessed 6 Sept 2018

  • Scott RJ, Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol Biol 8:265–274

    Article  CAS  PubMed  Google Scholar 

  • Serino G, Clerot D, Brevet J, Costantino P, Cardarelli M (1994) rol genes of Agrobacterium rhizogenes cucumopine strain; sequence, effects and pattern of expression. Plant Mol Biol 26:415–422

    Article  CAS  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Shillito RD, Saul MW, Paskowski SJ, Muller M, Potrykus L (1985) High efficiency direct gene transfer to plants. Bio/Technology 3:1099–1103

    Google Scholar 

  • Shiota H, Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homolog of ABI3. J Plant Physiol 156:510–515

    Article  CAS  Google Scholar 

  • Simpson K, Quiroz L, Rodriguez-Concepcion M, Stange C (2016) Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01344

  • Souza SR, Souza ES, Berbara RLL, Fernandes MS, Stark EMLM (2007) Enzymes of nitrogen metabolism and proteases activity in hairy roots of clover and carrots, with and without arbuscular mycorrhizal fungi. J Plant Nutr 30:1185–1204

    Article  CAS  Google Scholar 

  • Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC (1958) Growth and organized development at cultured cells. II. Interpretation of the growth from free cell to carrot plant. Am J Bot 45:709–713

    Article  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development at cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Svitashev S, Schwartz Ch, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata K, Takeuchi M, Fujita M, Azuma J, Kamada H, Sato F (2004) Isolation of putative glycoprotein gene from early somatic embryo of carrot and its possible involvement in somatic embryo development. Plant Cell Physiol 45:1658–1668

    Article  CAS  PubMed  Google Scholar 

  • Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144

    Article  CAS  PubMed  Google Scholar 

  • Tang GQ, Lüscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang GQ, Sturm A (1999) Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol 41:465–479

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Guiltinan MJ, Bustos S, Thomas T, Nessler C (1989) Carrot (Daucus carota) hypocotyls transformation using Agrobacterium tumefaciens. Plant Cell Rep 8:354–357

    Article  CAS  PubMed  Google Scholar 

  • Tokuji Y, Fukuda H (1999) A rapid method for transformation of carrot (Daucus carota L.) by using direct somatic embryogenesis. Biosci Biotechol Biochem 63:519–523

    Article  CAS  Google Scholar 

  • Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture – the protalix experience. Plant Biotechnol J 13:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • USDA Press (2018) Secretary Perdue issues USDA statement on plant breeding innovation. USDA Office of Communications. Press release No. 0070.18 of 28 Mar 2018

    Google Scholar 

  • Uvarova EA, Belavin PA, Permyakova NV, Zagorskaya AA, Nosareva OV, Kakimzhanova AA, Deineko EV (2013) Oral Immunogenicity of plant-mad Mycobacterium tuberculosis ESAT6 and CFP10. BioMed Res Int. https://doi.org/10.1155/2013/316304

    Article  Google Scholar 

  • Van Sluys MA, Tempe J, Fedoroff N (1987) Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J 6:3881–3889

    Article  PubMed  PubMed Central  Google Scholar 

  • Wally O, Punja ZK (2010) Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta 232(5):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2006) Carrot (Daucus carota L.). In: Wang K (ed) Methods in molecular biology, vol. 344: Agrobacterium protocols, 2/e vol.2. Humana Press Inc., Totowa, NJ

    Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2008) Comparative expression of beta-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep 27(2):279–287

    Article  PubMed  CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009a) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009b) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    Article  CAS  Google Scholar 

  • Wang LJ, Ni DA, Chen YN, Lee ZM (2001) The expression of Mycobacterium tuberculosis MPT64 protein in transgenic carrots. Acta Bot Sin 43:132–137

    CAS  Google Scholar 

  • WHO (2018) Immunization, vaccines and biological. http://www.who.int/immunization/diseases/measles. Accessed: 5 Sept 2018

  • Willmitzer L, Sanchez-Serrano J, Bushfield E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue. Mol Gen Genet 186:16–22

    Article  CAS  Google Scholar 

  • Wurtele E, Bulka K (1989) A simple, efficient method for the Agrobacterium-mediated transformation of carrot callus cells. Plant Sci 61:253–262

    Article  CAS  Google Scholar 

  • Xu ZS, Huang Y, Wang F, Song X, Wang GL, Xiong AS (2014) Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:262–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yau Y-Y, Davis SJ, Ipek A, Simon PW (2008) Early identification of stable transformation events by combined use of antibiotic selection and vital detection of green fluorescent protein (GFP) in carrot (Daucus carota L.) Callus. Agric Sci China 7(6):664–671

    Article  CAS  Google Scholar 

  • Yildiz M, Willis DK, Cavagnaro PF, Iorizzo M, Abak K, Simon PW (2013) Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Appl Genet 126:1689–1702

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada HA (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie,1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola, and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu M, Li Y, Zhao y, He H, Yang G, Zheng C (2009) Oral immunogenicity and protective efficacy in mice of a carrot-derived vaccine candidate expressing UreB subunit against Helicobacter pylori. Protein Expres Purif 69:127–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the Ministry of Science and Higher Education of the Republic of Poland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Baranski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baranski, R., Lukasiewicz, A. (2019). Genetic Engineering of Carrot. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_10

Download citation

Publish with us

Policies and ethics