Skip to main content

The Role of a Renewable Energy Target for the Transport Sector Beyond 2020: Lessons Learned from EU Biofuel Policy

  • Chapter
  • First Online:

Abstract

To date, biofuels remain the main option for addressing the European Union Renewable Energy Directive’s 10% transport sector target for renewable energy sources. At EU level and at the level of the member states, political support for biofuels has been motivated by expected contributions to the aims of greenhouse gas (GHG) mitigation, security of energy supply, rural development and employment creation. However, the diffusion of mainly agricultural crop-based biofuels has been accompanied by a critical debate on a range of sustainability issues such as land use change impacts or impacts on resource competition. Moreover, biofuels’ cost-effectiveness as a GHG mitigation option has been called into question. Between the two poles of high expectations and multi-faceted criticism, EU biofuel policy has proven a very dynamic policy field, with no small amount of policy uncertainty for market actors. Against the background of negotiations on a recast Renewable Energy Directive, this contribution discusses from an economic theory perspective whether there is a case for continuing a target which supports the use of biofuels and other low-carbon options in the transport sector; and if so, what lessons can be derived from EU biofuel policy so far for its design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In both cases, emissions from indirect land use changes are not included in the estimates.

  2. 2.

    “Advanced” biofuels encompass not only second-generation but also third-generation biofuels made from algae, see Directive (EU) 2015/1513.

  3. 3.

    Meanwhile, the European Parliament’s resolution on a recast RED criticises this approach, arguing for a more ambitious EU-level RES target of at least 35% by 2030 and its translation into national targets (European Parliament 2018).

  4. 4.

    Also, for the heating and cooling sector, an annual increase in RES share by 1% is envisioned, but in the Council’s 2017 proposal, this is included as an indicative trajectory only (Council of the European Union 2017a, Article 23).

  5. 5.

    In sum, the European Parliament’s proposal combines an overall minimum transport sector RES share (12% by 2030) with a non-decreasing cap on food or feed crop-based biofuels (max. 7% contribution), an increasing minimum share of advanced biofuels and other low-emission and renewable fuels (10% by 2030) and a separate increasing minimum share for selected advanced biofuels and biomethane (3.6% by 2030).

  6. 6.

    This encompasses international aviation but not international shipping, for which a separate 40% reduction target is defined (compared to 2005 levels).

References

  • 37. BImSchV. Siebenunddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung zur Anrechnung von strombasierten Kraftstoffen und mitverarbeiteten biogenen Ölen auf die Treibhausgasquote) vom 15. Mai 2017 (BGBl. I S. 1195).

    Google Scholar 

  • Berndes, G., Hansson, J., Egeskog, A., & Johnsson, F. (2010). Strategies for 2nd generation biofuels in EU – Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass and Bioenergy, 34(2), 227–236.

    Article  Google Scholar 

  • BMU [Federal Ministry for the Environment, Nature Conservation and Nuclear Safety]; BMELV [Federal Ministry of Food, Agriculture and Consumer Protection]. (2009). National biomass action plan for Germany, Berlin.

    Google Scholar 

  • BMUB [Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety]. (2016). Climate action plan 2050 – Principles and goals of the German government’s climate policy, Berlin.

    Google Scholar 

  • Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7), 4222–4234.

    Article  Google Scholar 

  • Council of the European Union. (2014). 2030 Climate and energy policy framework. European Council Conclusions – 23 and 24 October 2014. EUCO 169/14. Brussels.

    Google Scholar 

  • Council of the European Union. (2017a). Proposal for a directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (recast) – Guidance for further work. 8697/2/17 REV 2. Brussels.

    Google Scholar 

  • Council of the European Union. (2017b). Annexes to the proposal for a directive of the European Parliament and the Council on the promotion of the use of energy from renewable sources (recast). 8697/2/17 REV 2 ADD 1. Brussels.

    Google Scholar 

  • de Man, R., & German, L. (2017). Certifying the sustainability of biofuels: Promise and reality. Energy Policy, 109, 871–883.

    Google Scholar 

  • Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 15.9.2015, L 239/1- L 239/29.

    Google Scholar 

  • Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union, 17.5.2003, L 123/42-L 123/46.

    Google Scholar 

  • Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, 5.6.2009, L 140/16-L 140/62.

    Google Scholar 

  • Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC. Official Journal of the European Union, 5.6.2009, L 140/88-L 140/113.

    Google Scholar 

  • EC [European Commission]. (2005). Biomass Action Plan. COM(2005) 628 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2006). An EU strategy for biofuels. COM(2006) 34 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2010). Report from the Commission on indirect land-use change related to biofuels and bioliquids. COM(2010) 811 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2011). Roadmap to a single European transport area – Towards a competitive and resource efficient transport system. White Paper. COM(2011) 144 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2014). A policy framework for climate and energy in the period from 2020 to 2030. COM(2014) 15 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2016a). Proposal for a Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (recast). COM(2016) 767 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2016b). Annexes to the Proposal for a Directive of the European Parliament and the Council on the promotion of the use of energy from renewable sources (recast). COM(2016) 767 final Annexes 1 to 12. Brussels.

    Google Scholar 

  • EC [European Commission]. (2016c). The implementation of the 2011 White Paper on Transport “Roadmap to a Single European Transport Area – towards a competitive and resource-efficient transport system” five years after its publication: Achievements and challenges. Commission staff working document. SWD(2016) 226 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2017). Renewable Energy Progress Report. COM(2017) 57 final. Brussels.

    Google Scholar 

  • EC [European Commission]. (2000). Green Paper – Towards a European strategy for the security of energy supply. COM(2000) 769 final. Brussels.

    Google Scholar 

  • Edwards, R., Mulligan, D., & Marelli, L. (2010). Indirect land use change from increased biofuels demand: Comparison of models and results for marginal biofuels production from different feedstocks. JRC Scientific and Technical Reports. European Union, Luxembourg.

    Google Scholar 

  • EEA [European Environment Agency]. (2017a). Greenhouse gas emissions from transport. Retrieved December 4, 2017, from https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10

  • EEA [European Environment Agency]. (2017b). Trends and projections in Europe 2017. Tracking progress towards Europe’s climate and energy targets. EEA Report No 17/2017, Copenhagen.

    Google Scholar 

  • Eggert, H., & Greaker, M. (2013). Promoting second generation biofuels: Does the first generation pave the road? RFF Discussion Paper EfD 13-18. Resources for the Future, Washington, DC.

    Google Scholar 

  • EPRS [European Parliamentary Research Service]. (2017). Promoting renewable energy sources in the EU after 2020. Briefing EU Legislation in Progress. Retrieved November 30, 2017, from http://www.europarl.europa.eu/RegData/etudes/BRIE/2017/599278/EPRS_BRI(2017)599278_EN.pdf

  • European Parliament. (2018). Amendments adopted by the European Parliament on 17 January 2018 on the proposal for a directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (recast) (COM(2016)0767 – C8-0500/2016 – 2016/0382(COD)) (1) (Ordinary legislative procedure – recast). Strasbourg.

    Google Scholar 

  • Eurostat. (2018a). Share of energy from renewable sources [nrg_ind_335a]. Last update: 25.01.2018. Retrieved March 7, 2018, from http://ec.europa.eu/eurostat/en/web/products-datasets/-/NRG_IND_335A

  • Eurostat. (2018b). Energy statistics – quantities. Supply, transformation and consumption of renewable energies – annual data [nrg_107a]. Energy indicator: Final Energy Consumption – Transport. Last update: 02.02.2018. Retrieved March 7, 2018, from http://ec.europa.eu/eurostat/web/energy/data/database

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238.

    Article  Google Scholar 

  • Finon, D., & Perez, Y. (2007). The social efficiency of instruments of promotion of renewable energies: A transaction-cost perspective. Ecological Economics, 62(1), 77–92.

    Article  Google Scholar 

  • Frondel, M., & Peters, J. (2007). Biodiesel: A new Oildorado? Energy Policy, 35(3), 1675–1684.

    Article  Google Scholar 

  • Frondel, M., Ritter, N., Schmidt, C. M., & Vance, C. (2010). Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy, 38(8), 4048–4056.

    Article  Google Scholar 

  • Gallagher, K. S., Grübler, A., Kuhl, L., Nemet, G., & Wilson, C. (2012). The energy technology innovation system. Annual Review of Environment and Resources, 37, 137–162.

    Article  Google Scholar 

  • German, L., Goetz, A., Searchinger, T., de Oliveira, G. L. T., Tomei, J., Hunsberger, C., et al. (2017). Sine Qua Nons of sustainable biofuels: Distilling implications of under-performance for national biofuel programs. Energy Policy, 108(Supplement C), 806–817.

    Article  Google Scholar 

  • Gibbs, H. K., Johnston, M., Foley, J. A., Holloway, T., Monfreda, C., Ramankutty, N., et al. (2008). Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environmental Research Letters, 3(3), 10pp.

    Article  Google Scholar 

  • Giuntoli, J., Vorkapic, V., Garcia-Lledo, L., & Agostini, A. (2014). Is bioenergy from residues really and always sustainable? Qualitative assessment for policymakers. In C. Hoffmann, D. Baxter, K. Maniatis, A. Grassi, & P. Helm (Eds.), Papers of the 22nd European biomass conference. Setting the course for a biobased economy. Extracted from the Proceedings of the International Conference held in Hamburg, Germany, 23–26 June 2014. ETA-Florence Renewable Energies, Florence, pp. 1407–1422.

    Google Scholar 

  • Goetz, A., German, L., Hunsberger, C., & Schmidt, O. (2017). Do no harm? Risk perceptions in national bioenergy policies and actual mitigation performance. Energy Policy, 108(Supplement C), 776–790.

    Article  Google Scholar 

  • Hayek, F. A. (1968/2002). Competition as a discovery procedure. Quarterly Journal of Austrian Economics, 5(3), 9–23.

    Google Scholar 

  • Henke, J. M., & Klepper, G. (2006). Biokraftstoffe: Königsweg für Klimaschutz, profitable Landwirtschaft und sichere Energieversorgung? Kieler Diskussionsbeiträge 427. Kiel: Institut für Weltwirtschaft.

    Google Scholar 

  • Hermeling, C., & Wölfing, N. (2011). Energiepolitische Aspekte der Bioenergienutzung: Nutzungskonkurrenz, Klimaschutz, politische Förderung. Mannheim: Zentrum für Europäische Wirtschaftsforschung (ZEW).

    Google Scholar 

  • Hunsberger, C., German, L., & Goetz, A. (2017). “Unbundling” the biofuel promise: Querying the ability of liquid biofuels to deliver on socio-economic policy expectations. Energy Policy, 108(Supplement C), 791–805.

    Article  Google Scholar 

  • Isermeyer, F., & Zimmer, Y. (2006). Thesen zur Bioenergie-Politik in Deutschland. Arbeitsberichte des Bereichs Agrarökonomie 02/2006, Bundesforschungsanstalt für Landwirtschaft (FAL), Institut für Betriebswirtschaft, Braunschweig.

    Google Scholar 

  • Jaffe, A. B., Newell, R. G., & Stavins, R. N. (2005). A tale of two market failures: Technology and environmental policy. Ecological Economics, 54(2–3), 164–174.

    Article  Google Scholar 

  • Joint Research Centre. (2015). The impact of biofuels on transport and the environment, and their connection with agricultural development in Europe. Directorate-General for Internal Policies, Policy Department B: Structural and Cohesion Policies, Brussels.

    Google Scholar 

  • Kaup, F., & Selbmann, K. (2013). The seesaw of Germany’s biofuel policy – Tracing the evolvement to its current state. Energy Policy, 62(Supplement C), 513–521.

    Article  Google Scholar 

  • Köhler, J., Walz, R., Marscheder-Weidemann, F., & Thedieck, B. (2014). Lead markets in 2nd generation biofuels for aviation: A comparison of Germany, Brazil and the USA. Environmental Innovation and Societal Transitions, 10, 59–76.

    Article  Google Scholar 

  • Lehmann, P., Gawel, E., & Strunz, S. (2019). EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable? In E. Gawel, S. Strunz, P. Lehmann, & A. Purkus (Eds.), The European dimension of Germany’s energy transition – Opportunities and conflicts. Cham: Springer.

    Google Scholar 

  • Londo, M., & Deurwaarder, E. (2007). Developments in EU biofuels policy related to sustainability issues: Overview and outlook. Biofuels, Bioproducts & Biorefining, 1(4), 292–302.

    Article  Google Scholar 

  • Millinger, M., Ponitka, J., Arendt, O., & Thrän, D. (2017). Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany. Energy Policy, 107(Supplement C), 394–402.

    Article  Google Scholar 

  • Mohr, A., & Bausch, L. (2013). Social sustainability in certification schemes for biofuel production: An explorative analysis against the background of land use constraints in Brazil. Energy, Sustainability and Society, 3(1), 1–14.

    Article  Google Scholar 

  • Nusser, M., Sheridan, P., Walz, R., Wydra, S., & Seydel, P. (2007). Makroökonomische Effekte von nachwachsenden Rohstoffen. German Journal of Agricultural Economics, 56(5/6), 238–248.

    Google Scholar 

  • Perez, Y. (2019). Electromobility and energy transition: A review. In E. Gawel, S. Strunz, P. Lehmann, & A. Purkus (Eds.), The European dimension of Germany’s energy transition – Opportunities and conflicts. Cham: Springer.

    Google Scholar 

  • Plevin, R. J., O’Hare, M., Jones, A. D., Torn, M. S., & Gibbs, H. K. (2010). Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environmental Science & Technology, 44(21), 8015–8021.

    Article  Google Scholar 

  • Purkus, A., Gawel, E., & Thrän, D. (2017). Addressing uncertainty in decarbonisation policy mixes – Lessons learned from German and European bioenergy policy. Energy Research & Social Science, 33, 82–94.

    Article  Google Scholar 

  • REN21. (2017). Renewables 2017 Global Status Report. REN21 Secretariat, Paris.

    Google Scholar 

  • RES LEGAL. (2017). Legal sources on renewable energy: Renewable energy policy database. An Initiative of the European commission. Retrieved December 7, 2017, from http://www.res-legal.eu/

  • Rodrik, D. (2014). Green industrial policy. Oxford Review of Economic Policy, 30(3), 469–491.

    Article  Google Scholar 

  • Schlamann, I., Wieler, B., Fleckenstein, M., Walther-Thoß, J., Haase, N., & Mathe, L. (2013). Searching for sustainability. Comparative analysis of certification schemes for biomass used for the production of biofuels. Berlin: WWF Deutschland.

    Google Scholar 

  • Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.

    Article  Google Scholar 

  • Smith, A., Chewpreecha, U., & Pollitt, H. (2019). EU climate and energy policy beyond 2020: Is a single target for GHG reduction sufficient? In E. Gawel, S. Strunz, P. Lehmann, & A. Purkus (Eds.), The European dimension of Germany’s energy transition – Opportunities and conflicts. Cham: Springer.

    Google Scholar 

  • SRU [German Advisory Council on the Environment]. (2007). Climate change mitigation by biomass. Special report. Berlin.

    Google Scholar 

  • Stavins, R. N. (2014). The problem with EU renewables. The Environmental Forum, 31(3), 14.

    Google Scholar 

  • Tänzler, D., Luhmann, H.-J., Supersberger, N., Fischdick, M., Maas, A., & Carius, A. (2007). Die sicherheitspolitische Bedeutung erneuerbarer Energien. Im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Berlin: Adelphi Consult, Wuppertal Institut.

    Google Scholar 

  • Thrän, D., Edel, M., Pfeifer, J., Ponitka, J., Rode, M., & Knispel, S. (2011). DBFZ Report Nr. 4: Identifizierung strategischer Hemmnisse und Entwicklung von Lösungsansätzen zur Reduzierung der Nutzungskonkurrenzen beim weiteren Ausbau der Biomassenutzung. Deutsches Biomasseforschungszentrum (DBFZ), Leipzig.

    Google Scholar 

  • Upstream-Emissionsminderungs-Verordnung – UERV. Verordnung zur Anrechnung von Upstream-Emissionsminderungen auf die Treibhausgasquote vom 22. Januar 2018 (BGBl. I S. 169).

    Google Scholar 

  • van Dam, J., Junginger, M., & Faaij, A. P. C. (2010). From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renewable and Sustainable Energy Reviews, 14(9), 2445–2472.

    Article  Google Scholar 

  • Van Stappen, F., Brose, I., & Schenkel, Y. (2011). Direct and indirect land use changes issues in European sustainability initiatives: State-of-the-art, open issues and future developments. Biomass and Bioenergy, 35(12), 4824–4834.

    Article  Google Scholar 

  • WBA [Wissenschaftlicher Beirat Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz]. (2007). Nutzung von Biomasse zur Energiegewinnung – Empfehlungen an die Politik, Berlin.

    Google Scholar 

  • WBGU [German Advisory Council on Global Change]. (2008). Future bioenergy and sustainable land use, Berlin.

    Google Scholar 

  • Weimann, J. (2012). Atomausstieg und Energiewende: Wie sinnvoll ist der deutsche Alleingang? Energiewirtschaftliche Tagesfragen, 62(12), 34–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Purkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purkus, A., Gawel, E., Thrän, D. (2019). The Role of a Renewable Energy Target for the Transport Sector Beyond 2020: Lessons Learned from EU Biofuel Policy. In: Gawel, E., Strunz, S., Lehmann, P., Purkus, A. (eds) The European Dimension of Germany’s Energy Transition. Springer, Cham. https://doi.org/10.1007/978-3-030-03374-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03374-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03373-6

  • Online ISBN: 978-3-030-03374-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics