Skip to main content

Climate and Remotely Sensed Markers of Glacier Changes in the Himalaya

  • Chapter
  • First Online:
Environmental Change in the Himalayan Region

Abstract

The study of past and future climatic variations in the Hindu Kush–Himalayan (HKH) region is a well-documented topic of scientific research. Recent studies have highlighted the significantly higher rates of warming in the HKH region compared to the global average. The HKH region has the largest reserves of glacial ice outside the poles. These glaciers are predominantly known to be sensitive indicators of changing regional and global climate. The large geographical extent, high elevation and perennial inclemency in weather conditions project remote sensing as the only viable option to study glacial characteristics periodically on a regional scale. The present chapter starts with a review of significant studies to assess the extent of climate change in the HKH. Climate-sensitive glacial markers which can be studied using remote sensing are identified. The chapter focuses on the key markers such as changes in glacier extents, glacier facies and supraglacial debris, and mass balance and thickness. The chapter examines these markers separately with respect to changing climate through recent remote sensing-based studies. It provides an overview of recent studies which deal with regional scale glaciological monitoring and assessment. The conclusive section of the chapter suggests the future role of remote sensing applications in studying these markers of climate change. The chapter uses recent studies to highlight key aspects that should be kept in perspective while undertaking remotely sensed glacial assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreassen L, Paul F, Kääb A, Hausberg J (2008). Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere 2, 131–145.

    Article  Google Scholar 

  • Archer DR, HJ Fowler (2004). Spatial and Temporal Variations in Precipitation in the Upper Indus Basin, Global Teleconnections and Hydrological Implications. Hydrology and Earth System Sciences 8, 47–61.

    Article  Google Scholar 

  • Azam MF, Wagnon P, Ramanathan AL, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012). From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri Glacier (Western Himalaya, India). Journal of Glaciology 58, 315–324.

    Article  Google Scholar 

  • Baidya SK, Shrestha ML, Sheikh MM (2008). Trends in Daily Climatic Extremes of Temperature and Precipitation in Nepal. Journal of Hydrology and Meteorology 5, 38–53.

    Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F, Guo W, Liu S, Immerzeel W, Shrestha B (2015). The glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010. International Journal of Water Resources Development 31, 161–173.

    Article  Google Scholar 

  • Bajracharya SR, Shrestha B (eds) 2011. The status of glaciers in the Hindu Kush-Himalayan region. Kathmandu: ICIMOD. http://lib.icimod.org/record/9419/files/icimod-the_status_of_glaciers_in_the_hindu_kush-himalayan_region[1].pdf.

  • Ballantyne CK, Benn DI (1994). Paraglacial slope adjustment and resedimentation following recent glacier retreat, Fabergstolsdalen, Norway’. Arctic and Alpine Research 26, 255–269.

    Article  Google Scholar 

  • Bamber JL, Rivera A (2007). A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change 59, 138–148.

    Article  Google Scholar 

  • Bayr IJ, Hall DK, Kovalick WM (1994). Observations on glaciers in the eastern Austrian Alps using satellite data. International Journal of Remote Sensing 15, 1733–42.

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment 108, 327–338.

    Article  Google Scholar 

  • Berthier E, Schiefer E, Clarke GK, Menounos B, Rémy F (2010). Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geoscience 3, 92–95.

    Article  CAS  Google Scholar 

  • Bhambri R, Bolch T (2009). Glacier Mapping: A Review with special Reference to the Indian Himalayas. Progress in Physical Geography 33, 672–704.

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK (2011a). Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. International Journal of Remote Sensing 32, 8095–8119.

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC (2011b). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology 57, 543–556.

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Sam L, Snehmani (2016a) Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects. Geocarto International 31, 557–574.

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Snehmani, Singh MK, Sam L, Gupta RD (2014). Mapping debris - covered glaciers and identifying factors affecting the accuracy. Cold Regions Science and Technology 106, 161–174.

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Snehmani, Sam L, Singh MK, Singh S, Kumar R (2015). Applicability of Landsat 8 data for characterising glacier facies and supraglacial debris. International Journal of Applied Earth Observation and Geoinformation 38, 51–64.

    Article  Google Scholar 

  • Bhardwaj A, Sam L, Bhardwaj A, Martin-Torres FJ (2016b). LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sensing of Environment, 177; 125–143.

    Article  Google Scholar 

  • Bhardwaj A, Sam L, Akanksha, Martin-Torres FJ, Kumar R (2016c). UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sensing of Environment 175, 196–204.

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010). Climate Change and the Precipitation Variations in the Northwestern Himalaya: 1866–2006. International Journal of Climatology 30, 535–548.

    Google Scholar 

  • Bolch T (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change 56, 1–12.

    Article  Google Scholar 

  • Bolch T, Bhambri R, Kamp U, Pieczonka T (2011). Glacier length, area and volume changes in the Himalaya: an overview and specific examples. In: AGU Fall Meeting Abstracts, December. vol. 1 pt.02.

    Google Scholar 

  • Bolch T, Buchroithner M, Pieczonka T, Kunert A. (2008a). Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54, 592–600.

    Article  Google Scholar 

  • Bolch T, Buchroithner MF, Peters J, Baessler M, Bajracharya S. (2008b). Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Science 8, 1329–1340.

    Article  Google Scholar 

  • Bolch T and Kamp U. (2006). Glacier Mapping in High Mountains Using DEMs, Landsat and ASTER Data. Grazer Schriften der Geographie und Raumforschung 41, 37–48.

    Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S and Stoffel M. (2012). The state and fate of Himalayan glaciers. Science 336, 310–314.

    Article  CAS  Google Scholar 

  • Bolch T, Menounos B, Wheate R. (2010). Landsat-based glacier inventory of western Canada, 1985–2005. Remote Sensing of Environment 114, 127-137.

    Article  Google Scholar 

  • Bookhagen, B. (2010). Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics, Natural Hazards and Risk 1, 37–50.

    Google Scholar 

  • Brenning A, Long S and Fieguth P. (2012). Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sensing of Environment 125, 227–237.

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. (2006). Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Journal of Geophysical Research 111: D12106. https://doi.org/10.1029/2005jd006548.

  • Caesar J, Alexander LV, Trewin B, Tsering K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay MM and Karmacharya J. (2011). Changes in Temperature and Precipitation Extremes over the Indo Pacific Region from 1971 to 2005. International Journal of Climatology 31, 791–801.

    Article  Google Scholar 

  • Carrivick JL and Tweed FS. (2013). Proglacial lakes: character, behaviour and geological importance. Quaternary Science Reviews 78, 34–52.

    Article  Google Scholar 

  • Charles CD, Hunter DE and Fairbanks RG. (1997). Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277, 925–928.

    Article  CAS  Google Scholar 

  • CNCCC (2007). China National Report on Climate Change 2007 (in Chinese). National Committee on Climate Change, Beijing, China.

    Google Scholar 

  • Cogley JG (2009). Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96–100.

    Article  Google Scholar 

  • Dadson SJ, Church M (2005). Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surface Processes and Landforms 30, 1387–1403.

    Article  Google Scholar 

  • Dash SK, Jenamani RK, Kalsi SR, Panda SK (2007). Some Evidence of Climate Change in Twentieth-century India. Climatic Change 85, 299–321.

    Article  Google Scholar 

  • Dehecq A, Gourmelen N, Shepherd A, Cullen R, Trouvé E (2013). Evaluation of CryoSat-2 for height retrieval over the Himalayan range. In: CryoSat-2 third user workshop, March 2013. Dresden, Germany.

    Google Scholar 

  • Dhanju MS and Buch A. (1989). Remote sensing of Himalayan glaciers. In: Proceedings of National Meet on Himalayan Glaciology, New Delhi, Ministry of Science and Technology, Government of India, pp. 193–213.

    Google Scholar 

  • Dimri AP, Dash SK (2011). Wintertime Climatic Trends in the Western Himalayas. Climatic Change 111, 775–800.

    Article  Google Scholar 

  • Diodato N, Bellocchi G, Tartari G (2012). How do Himalayan areas respond to global warming? International Journal of Climatology 32, 95–982.

    Article  Google Scholar 

  • Du MY, Kawashima S, Younemura S, Zhang XZ, Chen SB (2004). Mutual influence between human activities and climate change in the Tibetan plateau during recent years. Global Planetary Change 41, 241–249.

    Article  Google Scholar 

  • Dyhrenfurth GO. (1955). To the Third Pole: The history of the High Himalaya (1st edn). Ex Libris, Werner Laurie. London, UK.

    Google Scholar 

  • Dyurgerov MD, Meier MF (2005). Glaciers and Changing Earth System: A 2004 Snapshot. Boulder, CO: Institute of Arctic and Alpine Research, University of Colorado.

    Google Scholar 

  • Engeset RV, Weydahl DJ (1998). Analysis of glaciers and geomorphology on Svalbard using multitemporal ERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing 36, 1879–1887.

    Article  Google Scholar 

  • Fallourd R, Harant O, Trouvé E, Nicolas JM, Tupin F, Gay M, Bolon P (2009). Monitoring temperate glaciers: combined use of multi-date TerraSAR-X images and continous GPS measurements. In: The Fifth International Workshop on the Analysis of Multi-temporal Remote Sensing Images.

    Google Scholar 

  • Farooq AB, Khan AH (2004). Climate change perspective in Pakistan. Proceedings of Capacity Building APN Workshop on Global Change Research, Islamabad, pp 39–46.

    Google Scholar 

  • Forsythe N, Blenkinsop S, Fowler HJ (2015). Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources. Earth System Dynamics 6, 311–326.

    Article  Google Scholar 

  • Forsythe N, Kilsby CG, Fowler HJ, Archer DR (2012). Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mountain Research and Development 32, 16–29.

    Article  Google Scholar 

  • Fowler HJ, Archer DR (2005). Hydro-climatological Variability in the Upper Indus Basin and Implications for Water Resources. Regional Hydrological Impacts of Climatic Change-Impact Assessment and Decision Making 295, 131–138.

    Google Scholar 

  • Fowler HJ, Archer DR (2006). Conflicting signals of climate change in the Upper Indus basin. Journal of Climate 19, 4276–4293.

    Article  Google Scholar 

  • Francis PA, Gadgil S (2009). The aberrant behaviour of the Indian monsoon in June (2009). Current Science 97, 1291–1295.

    Google Scholar 

  • Gao J, Liu Y (2001). Applications of remote sensing, GIS and GPS in glaciology: a review. Progress in Physical Geography 25, 520–540.

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kaab A (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere, 7, 1263–1286.

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M (2008). Trends in the Rainfall Pattern over India. International Journal of Climatology 28, 1453–1469.

    Article  Google Scholar 

  • Haefner H, Seidel K, Ehrler H (1997). Applications of snow cover mapping in high mountain regions. Physics and Chemistry of the Earth 22, 275–278.

    Article  Google Scholar 

  • Hall DK, Williams RSJr, Bayr KJ (1992). Glacier recession in Iceland and Austria. EOS, Transactions of the American Geophysical Union 73, 135–41.

    Google Scholar 

  • Haeberli W, Cihlar J, Barry RG (2000). Glacier monitoring within the global climate observing system. Annals of Glaciology 31, 241–246.

    Article  Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007). Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology 46, 150–160.

    Article  Google Scholar 

  • Harrison AR, Lucas RM (1989). Multispectral classification of snow using NOAA AVHRR imagery. International Journal of Remote Sensing 10, 907–916.

    Article  Google Scholar 

  • Heid T, Kääb A (2012). Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment 118, 339–355.

    Article  Google Scholar 

  • Hewitt K (2005). The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mountain Research and Development 25, 332–340.

    Article  Google Scholar 

  • Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002). Remote-sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Journal of Canadian Geotechnical Journal 39, 316–330.

    Article  Google Scholar 

  • Immerzeel W (2008). Historical Trends and Future Predictions of Climate Variability in the Brahmaputra Basin. International Journal of Climatology 28, 243–254.

    Article  Google Scholar 

  • Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014). High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment 150, 93–103.

    Article  Google Scholar 

  • IPCC. (2007a). Climate Change (2007): The Physical Sciences Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge: Cambridge University Press. www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-frontmatter.pdf. Accessed on 15 May (2015).

  • IPCC. (2007b). Climate Change (2007): Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Climate Change (2014): Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Jacob T, Wahr J, Tad Pfeffer W, Swenson S (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518.

    Article  CAS  Google Scholar 

  • Jain SK, Goswami A, Saraf AK. (2008). Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. International Journal of Remote Sensing 29, 5863–5878.

    Article  Google Scholar 

  • Junfeng W, Shiyin L, Wanqin G, Junli X, Weijia B, Donghui S (2015). Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to (2007) based on historical topographic maps, SRTM, and ASTER stereo images. Arctic, Antarctic, and Alpine Research 47, 301–311.

    Article  Google Scholar 

  • Kääb A (2005). Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment 94, 463–474.

    Article  Google Scholar 

  • Karimi N, Farokhnia A, Karimi L, Eftekhari M, Ghalkhani H (2012). Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology 71, 73–83.

    Article  Google Scholar 

  • Khattak MS, Babel MS, Sharif M (2011). Hydro-meteorological Trends in the Upper Indus River Basin in Pakistan. Climate Research 46, 103–119.

    Article  Google Scholar 

  • Konig M, Winther J-G, Isaksson E (2001). Measuring Snow and Glacier ice properties from Satellite. Reviews of Geophysics 39, 1–27.

    Article  Google Scholar 

  • Krishna AP (2005). Snow and glacier cover assessment in the high mountains of Sikkim Himalayas. Hydrological Processes 19, 2375–83.

    Article  Google Scholar 

  • Krishnamurthy V, Shukla J (2000). Intraseasonal and interannual variability of rainfall over India. Journal of Climate 13, 4366–4377.

    Article  Google Scholar 

  • Kulkarni AV (1991). Glacier inventory in Himachal Pradesh using satellite images. Journal of Indian Society of Remote Sensing 19, 195–203.

    Article  Google Scholar 

  • Kulkarni AV (1992). Mass balance of Himalayan glaciers using AAR and ELA methods. Journal of Glaciology 38, 101–104.

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current science 92, 69–74.

    Google Scholar 

  • Kulkarni AV, Rathore BP, Mahajan S, Mathur P (2005). Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh, Current Science 88, 1844–49.

    Google Scholar 

  • Kulkarni AV, Rathore BP, Suja A (2004). Monitoring of glacial mass balance in the Baspa basin using accumulation area ratio method. Current Science 86, 101–106.

    Google Scholar 

  • Kulkarni AV, Sabde SS, Kripalani RH (2009). Spatial variability of intra-seasonal oscillations during extreme Indian monsoons. International Journal of Climatology 29, 1945–1955.

    Article  Google Scholar 

  • Kulkarni AV, Suja A (2003). Estimation of recent glacial variations in Baspa Basin using remote sensing techniques. Journal of Indian Society of Remote Sensing 31, 81–90.

    Article  Google Scholar 

  • Kumar P, Kotlarski S, Moseley C, Sieck K, Frey H, Stoffel M, Jacob D (2015). Response of Karakoram-Himalayan glaciers to climate variability and climatic change: A regional climate model assessment, Geophys. Res. Lett. 42. https://doi.org/10.1002/(2015)gl063392.

  • Kumar V, Venkataraman G, Rao YS, Singh G (2008). Spaceborne InSAR technique for study of Himalayan glaciers using ENVISAT ASAR and ERS data. In IEEE International Geoscience and Remote Sensing Symposium 2008 Jul 7 (Vol. 4, pp. IV-1085).

    Google Scholar 

  • Lamsal D, Sawagaki T, Watanabe T (2011). Digital terrain modelling using Corona and ALOS PRISM data to investigate the distal part of Imja Glacier, Khumbu Himal, Nepal. Journal of Mountain Science 8(3), 390–402.

    Article  Google Scholar 

  • Liu SY, Ding YJ, Li J, Shangguan DH, Zhang Y (2006a). Glaciers in response to recent climate warming in Western China’. Quaternary Sciences 26, 762–771.

    Google Scholar 

  • Liu X, Yin ZY, Shao X, Qin N (2006b). Temporal Trends and Variability of Daily Maximum and Minimum, Extreme Temperature Events, and Growing Season Length over the Eastern and Central Tibetan Plateau During 1961–(2003). Journal of Geophysical Research 111:D19109. https://doi.org/10.1029/(2005)jd006915.

  • Lwina A, Khaingb MM (2012). Yangon River Geomorphology Identification and its Enviromental Imapacts Analysis by Optical and Radar Sensing Techniques. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1, 175–179.

    Google Scholar 

  • Maskey S, Uhlenbrook S, Ojha S (2011). An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Climatic Change 108, 391–400.

    Article  Google Scholar 

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J. (2008). Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmospheric Chemistry and Physics 8, 1343–1352.

    Article  CAS  Google Scholar 

  • Ming J, Du Z, Xiao C, Xu X, Zhang D (2012). Darkening of the mid-Himalaya glaciers since (2000) and the potential causes. Environmental Research Letters 7, 14021.

    Article  Google Scholar 

  • Nakawo M, Yabuki H, Sakai A (1999). Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology 28, 118–122.

    Article  Google Scholar 

  • Narama C, Kääb A, Duishonakunov M, Abdrakhmatov K (2010). Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~(2000)), and ALOS (~(2007)) satellite data. Global and Planetary Change 71, 42–54.

    Article  Google Scholar 

  • Negi HS, Jassar HS, Saravana G, Thakur NK, Snehmani, Ganju A (2013). Snow-cover characteristics using Hyperion data for the Himalayan region. International journal of remote sensing 34, 2140–2161.

    Article  Google Scholar 

  • Negi HS, Shekhar C, Singh SK (2015). Snow and glacier investigations using hyperspectral data in the Himalaya. Current Science 108, 892–902.

    Google Scholar 

  • Nuimura T, Fujita K, Fukui K, Asahi K, Aryal R, Ageta Y (2011). Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arctic, Antarctic, and Alpine Research 43, 246–255.

    Google Scholar 

  • Nuimura T, Fujita K, Yamaguchi S, Sharma RR (2012). Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, (1992)–(2008). Journal of Glaciology 58, 648–656.

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308, 675–677.

    Article  CAS  Google Scholar 

  • Paul F, Barrand NE, Baumann S, Berthier E, Bolch T, Casey K, Frey H, Joshi SP, Konovalov V, Bris R Le, Mölg N, Nosenko G, Nuth C, Pope A, Racoviteanu A, Rastner P, Raup B, Scharrer K, Steffen S, Winsvold S (2013) On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology 54, 171–182.

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller J R. Ning L. Ohmura A. Palazzi E. Rangwala I. Schöner W. Severskiy I. Shahgedanova M. Wang MB,Williamson SN and Yang DQ (2015) Elevation-Dependent. Warming in Mountain Regions of the World. Nature Climate Change 5, 424–430.

    Google Scholar 

  • Pratap B, Dobhal DP, Mehta M, Bhambri R (2014). Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India. Ann Glaciol, 56, 9–16.

    Article  Google Scholar 

  • Mool PK (2010). Glacial lakes and glacial lake outburst floods in the Himalayas. International Center for Integrated Mountain Development (ICIMOD). http://geoportal-icimod.org/symposium(2010)/PPT/Theme-I/PK%20Mool.pdf. Accessed 25 April 2011.

  • Quincey DJ, Luckman A (2009). Progress in satellite remote sensing of ice sheets. Progress in Physical Geography 33, 547–567.

    Article  Google Scholar 

  • Quincey DJ, Lucas RM, Richardson SD, Glasser NF, Hambrey MJ, Reynolds JM (2005). Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progress in Physical Geography 29, 475–505.

    Article  Google Scholar 

  • Racoviteanu AE, Arnaud Y, Williams MW, Manley WF (2015). Spatial patterns in glacier characteristics and area changes from 1962 to (2006) in the Kanchenjunga–Sikkim area, eastern Himalaya. The Cryosphere 9, 505–523.

    Article  Google Scholar 

  • Racoviteanu A, Williams MW (2012). Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sensing 4(10):3078–3109.

    Article  Google Scholar 

  • Racoviteanu AE, Williams MW, Barry RG (2008). Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya. Sensors 8, 3355–3383.

    Article  Google Scholar 

  • Radic V, Hock R (2010). Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research 115,F01010.

    Google Scholar 

  • Rau F, Braun M, Friedrich M, Weber F, Gobmann H (2000). Radar glacier zones and their boundaries as indicators of glacier mass balance and climatic variability. In: Proceedings of the 2nd EARSeL Workshop-Special Interest Group Land Ice and Snow, p 317–327.

    Google Scholar 

  • Rees W (2006). Remote Sensing of Snow and Ice. Taylor and Francis. CRC Press, Taylor & Francis Group: New York.

    Google Scholar 

  • Ren JW, Qin DH, Kang SC, Hou, SG, Pu JC, Jin ZF (2003). Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin 48, 2478–2482.

    Google Scholar 

  • Rignot EJ, Gogineni SP, Krabill WB, Ekholm S (1997). North and Northeast Greenland ice discharge from satellite radar interferometry. Science 276, 934–937.

    Article  CAS  Google Scholar 

  • Rott H (1994). Thematic studies in alpine areas by means of polarmetric SAR and optical imagery. Advances in Space Research 14, 217–26.

    Article  Google Scholar 

  • Rott H, Stuefer M, Siegel A, Skvarca P, Eckstaller A (1998). Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophysical Research Letters 25, 1407–1410.

    Article  Google Scholar 

  • Ruosteenoja K, Carter TR, Jylhä K, Tuomenvirta H (2003). Future climate in world regions: an inter comparison of model-based projections for the new IPCC emissions scenarios. Helsinki: Finnish Environment Institute. The Finnish Environment 644, 83.

    Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadkar JV, Kamala K, Pant GB (2006). High resolution climate change scenario for India for the 21st Century. Current Science 90, 334–345.

    Google Scholar 

  • Scherler D, Leprince S, Strecker MR (2008). Glacier-surface velocities in alpine terrain from optical satellite imagery - Accuracy improvement and quality assessment. Remote Sensing of Environment 112, 3806–3819.

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2012). Changes of high altitude glaciers from 1969 to (2010) in the trans-Himalayan Kang Yatze Massif, Ladakh, northwest India. Arctic, Antarctic, and Alpine Research 44, 107–121.

    Google Scholar 

  • Schmidt S, Nüsser M (2009). Fluctuations of Raikot Glacier during the past 70 years: A case study from the Nanga Parbat massif, northern Pakistan. Journal of Glaciology 55, 949–959.

    Article  Google Scholar 

  • Shi J (1998). Estimation of snow water equivalence using SIR-C/X-SAR. In: Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment and Space, International Society for Optics and Photonics, p 57–67.

    Google Scholar 

  • Shi J, Dozier J (1993). Measurements of snow and glacier covered areas with single polarization sar, Annals of Glaciology 17, 72–76.

    Article  Google Scholar 

  • Shi J, Dozier J (1997). Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment 59, 294–307.

    Article  Google Scholar 

  • Shi J, Dozier J (2000a). Estimation of snow water equivalence using SIR-C/X SAR, Part I: Inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing 38, 2465–2474.

    Article  Google Scholar 

  • Shi J, Dozier J (2000b). Estimation of snow water equivalence using SIR-C/X-SAR, Part II: Inferring snow depth and particle size. IEEE Transactions on Geoscience and Remote Sensing 38, 2475–2488.

    Article  Google Scholar 

  • Shi J, Dozier J, Rott H (1994). Snow mapping in alpine regions with synthetic aperture radar. IEEE Journal of Geoscience and Remote Sensing 32, 152–158.

    Google Scholar 

  • Shrestha AB (2004). Climate change in Nepal and its impact on Himalayan glaciers. Paper presented at the European Climate Change Forum Symposium on Key vulnerability regions and climate change: Identifying threshold for impacts and adaptation in relation to Article 2 of the UNFCCC, Beijing.

    Google Scholar 

  • Shrestha AB, Devkota LP (2010). Climate Change in the Eastern Himalayas: Observed Trends and Model Projections: Climate Change Impact and Vulnerability in the Eastern Himalayas – Technical Report 1. Kathmandu, Nepal: International Centre for Integrated Mountain Development.

    Google Scholar 

  • Shrestha, AB, Sharma, E, Tse-ring, K and Chettri, N (eds) (2010). Climate Change Vulnerability of Mountain Ecosystems in the Eastern Himalayas-Synthesis Report. ICIMOD, Kathmandu.

    Google Scholar 

  • Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000). Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large-scale climatology parameters. International Journal of Climatology 20, 317–327.

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on the temperature records from Nepal for the period 1971–94. Journal of Climate 12, 2775–2786.

    Article  Google Scholar 

  • Shukla A, Arora MK, Gupta RP (2010). Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment 114, 1378–1387.

    Article  Google Scholar 

  • Shukla A, Gupta RP, Arora MK (2009). Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. Journal of Glaciology 55, 444–452.

    Article  Google Scholar 

  • Singh J, Yadav RR, Wilmking M (2009). A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Climate Dynamics 33, 1149–1158.

    Article  Google Scholar 

  • Singh MK, Snehmani, Gupta RD, Bhardwaj A, Joshi PK, Ganju A. (2014). High resolution DEM generation for complex snow covered Indian Himalayan Region using ADS80 aerial push-broom camera: a first time attempt. Arabian Journal of geosciences. https://doi.org/10.1007/s12517-014-1299-9.

    Article  Google Scholar 

  • Singh P, Umesh KH, Kumar N (2008). Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas/Modélisation et estimation des différentes composantes de l’écoulement fluviatile du bassin du Glacier Gangotri, Himalaya. Hydrological Sciences Journal 53, 309–322.

    Article  Google Scholar 

  • Song C, Ye Q, Cheng X (2015). Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin 60, 1287–1297.

    Article  Google Scholar 

  • Sontakke NA, Singh HN, Singh N (2009). Monitoring Physiographic Rainfall Variation for Sustainable Management of Water Bodies in India. In: MK Jha (Ed.) Natural and Anthropogenic Disasters: Vulnerability, Preparedness and Mitigation, Springer, The Netherlands, pp. 293–331.

    Chapter  Google Scholar 

  • Strozzi T, Wiesmann A, Kääb A, Joshi S, Mool P (2012). Glacial lake mapping with very high resolution satellite SAR data. Natural Hazards and Earth System Sciences 12, 2487–2498.

    Article  Google Scholar 

  • Tan L, Cai Y, Yi L, An Z, Li Ai L (2008). Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity. Climate of the Past 4, 19–28.

    Article  Google Scholar 

  • Tiwari RK, Gupta RP, Gens R, Prakash A (2012). Use of optical, thermal and microwave imagery for debris characterization in Bara-Shigri glacier, Himalayas, India. In: Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, July (2012) p 4422–4425.

    Google Scholar 

  • Ukita J, Narama C. Tadono T, Yamanokuchi T, Tomiyama N, Kawamoto S, Abe C, Uda T, Yabuki H, Fujita K, Nishimura K (2011). Glacial lake inventory of Bhutan using ALOS data: methods and preliminary results. Annals of Glaciology 52, 65–71.

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008). Tibetan Plateau Warming and Precipitation Changes in East Asia. Geophysical Research Letters 35, L14702.

    Google Scholar 

  • Wang X, Gong P, Zhao Y, Xu Y, Cheng X, Niu Z, Luo Z, Huang H, Sun F, Li X (2013). Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sensing of Environment 132, 131–144.

    Article  Google Scholar 

  • Wang X, Xie H (2009). New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. Journal of Hydrology 371, 192–200.

    Article  Google Scholar 

  • Webster PJ (1987). The Elementary Monsoon. John Wiley and Sons, New York.

    Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998). Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research-Oceans 103, 14451–14510.

    Article  Google Scholar 

  • Whillans IM, Tseng YH (1995). Automatic tracking of crevasses on satellite images. Cold Regions Science and Technology 23, 201–214.

    Article  Google Scholar 

  • Williams MW (1986). Glacier inventories of Iceland: evaluation and use of sources of data. Annals of Glaciology 8, 184–91.

    Article  Google Scholar 

  • Xu R, Xu H (2004). Evaluation on Image Fusion Algorithms of Landsat-7 ETM+PAN Band and Multispectral Bands. Geo-information Science 1,021.

    Google Scholar 

  • Xu Z, Gong T, Liu C (2007). Detection of decadal trends in precipitation across the Tibetan Plateau. Methodology in Hydrology. Proceedings of the Second International Symposium on Methodology in Hydrology held in Nanjing, China, October–November (2005). IAHS Publ. 311, 271–276.

    Google Scholar 

  • Yadav RR (2011a). Long-term hydroclimatic variability in monsoon shadow zone of western Himalaya, India. Climate Dynamics 36, 1453–1462.

    Article  Google Scholar 

  • Yadav RR (2011b). Tree ring evidence of a 20th century precipitation surge in the monsoon shadow zone of the western Himalaya, India. Journal of Geophysical Research: Atmospheres 116(D2), 1984–(2012).

    Google Scholar 

  • Yang X, Zhang T, Qin D, Kang S, Qin X (2011). Characteristics and Changes in Air Temperature and Glacier’s Response on the North Slope of Mt. Qomolangma (Mt. Everest). Arctic, Antarctic, and Alpine Research 43, 147–160.

    Article  Google Scholar 

  • Yao T, Duan K, Xu B, Wang N, Guo X, Yang X (2008). Ice core precipitation record in Central Tibetan plateau since AD 1600. Climate of the Past Discuss 4, 233–248.

    Article  Google Scholar 

  • Yao TD, Guo XJ, Lonnie T, Duan KQ, Wang NL, Pu JC, Xu BQ, Yang XX, Sun WZ (2006). δ18O Record and Temperature Change over the Past 100 years in Ice Cores on the Tibetan Plateau. Science in China: Series D Earth Science 49, 1–9.

    Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, 663–667.

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E, Yan Y (2008). Changes in Daily Climate Extremes in the Eastern and Central Tibetan Plateau During (1961–2005). Journal of Geophysical Research 113: D07101. https://doi.org/10.1029/(2007)jd009389.

  • Zemp M, Hoelzle M, Haeberli W (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology 50, 101–111.

    Article  Google Scholar 

  • Zeng Q, Cao M, Feng X, Liang F, Chen X, Sheng W (1984). A study of spectral reflection characteristics for snow, ice and water in the north of China. In: Hydrological Applications of Remote Sensing and Remote Data Transmission. Proceedings of the Hamburg Symposium. IAHS Publication 145, 451–462.

    Google Scholar 

  • Zhao L, Ping CL, Yang DQ, Cheng GD, Ding YJ, Liu SY (2004). Change of climate and seasonally frozen ground over the past 30 years in Qinghai-Tibetan plateau, China. Global and Planetary Change 43, 19–31.

    Article  Google Scholar 

  • Zinck JA, López J, Metternicht GI, Shrestha DP, Vázquez-Selem L (2001). Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation 3, 43–53.

    Article  Google Scholar 

  • Zongli J, Shiyin L, Sichun L, Xin W (2012). Estimate Yengisogat Glacier Surface Flow Velocities Using ALOS PALSAR Data Feature-tracking, Karakoram, China. Procedia Environmental Sciences 12, 646–652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sam, L., Kumar, R., Bhardwaj, A. (2019). Climate and Remotely Sensed Markers of Glacier Changes in the Himalaya. In: Saikia, A., Thapa, P. (eds) Environmental Change in the Himalayan Region. Springer, Cham. https://doi.org/10.1007/978-3-030-03362-0_4

Download citation

Publish with us

Policies and ethics