Skip to main content

Injection Molding Process Optimization Based on Fuzzy Quality Evaluation

  • Chapter
  • First Online:
Intelligent Optimization of Mold Design and Process Parameters in Injection Molding

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In Chap. 5, the proposed approach was designed to optimize single-objective problem on the possibility of short shot defects in injection molding. The aim of this Chapter is to extend that approach to optimize a multi-objective problem in injection molding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2013). Improving injection moulding processes using experimental design. World Academy of Science, Engineering and Technology, 75, 3–28.

    Google Scholar 

  • Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(9), 6218–6224.

    Article  Google Scholar 

  • Chen, M.-Y., Tzeng, H.-W., Chen, Y.-C., & Chen, S.-C. (2008). The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 47(1), 119–126.

    Article  Google Scholar 

  • Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228.

    Article  Google Scholar 

  • Dimla, D. E., Camilotto, M., & Miani, F. (2005). Design and optimisation of conformal cooling channels in injection moulding tools. Journal of Materials Processing Technology, 164–165, 1294–1300.

    Article  Google Scholar 

  • Fisher, J. M. (2003). Handbook of molded part shrinkage and warpage. Plastics Design Library.

    Google Scholar 

  • Goodship, V. (2004). Troubleshooting injection moulding (Vol. 15). iSmithers Rapra Publishing.

    Google Scholar 

  • Hassan, H., Regnier, N., & Defaye, G. (2009). A 3D study on the effect of gate location on the cooling of polymer by injection molding. International Journal of Heat and Fluid Flow, 30(6), 1218–1229.

    Article  Google Scholar 

  • Hassan, H., Regnier, N., Pujos, C., Arquis, E., & Defaye, G. (2010). Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding. Applied Thermal Engineering, 30(13), 1547–1557.

    Article  Google Scholar 

  • He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: a fuzzy-neuro approach. Journal of Intelligent Manufacturing, 9(1), 17–27.

    Article  Google Scholar 

  • Huang, M.-C., & Tai, C.-C. (2001). The effective factors in the warpage problem of an injection-molded part with a thin shell feature. Journal of Materials Processing Technology, 110(1), 1–9.

    Article  Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58–191). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Kima, H. S., Sonb, J. S., & Imc, Y. T. (2003). Gate location design in injection molding of an automobile junction box with integral hinges. Journal of Materials Processing Technology, 140(1), 110–115.

    Article  Google Scholar 

  • Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z. B., & Turng, L.-S. (2006). Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. Plastics, Rubber and Composites, 35(5), 198–209.

    Article  Google Scholar 

  • Li, J.-Q., Li, D.-Q., Guo, Z.-Y., & Lv, H.-Y. (2007). Single gate optimization for plastic injection mold. Journal of Zhejiang University, 8(7), 1077–1083.

    Article  Google Scholar 

  • Liao, S. J., Chang, D. Y., Chen, H. J., Tsou, L. S., Ho, J. R., Yau, H. T., & Hsieh, W. H. (2004). Optimal process conditions of shrinkage and warpage of thin-wall parts. Polymer Engineering and Science, 44(5), 917–928.

    Article  Google Scholar 

  • Lo, W. C., Tsai, K. M., & Hsieh, C. Y. (2009). Six Sigma approach to improve surface precision of optical lenses in the injection-molding process. International Journal of Advanced Manufacturing Technology, 41(9–10), 885–896.

    Article  Google Scholar 

  • Lotti, C., Ueki, M. M., & Bretas, R. E. S. (2002). Prediction of the shrinkage of injection molded iPP plaques using artificial neural networks. Journal of Injection Molding Technology, 6(3), 157–176.

    Google Scholar 

  • Maldonado, A., Garcia, J. L., Alvarado, A., & Balderrama, C. O. (2013). A hierarchical fuzzy axiomatic design methodology for ergonomic compatibility evaluation of advanced manufacturing technology. International Journal of Advanced Manufacturing Technology, 66(1–4), 171–186.

    Article  Google Scholar 

  • Moayyedian, M., Abhary, K., & Marian, R. (2015a). Improved gate system for scrap reduction in injection molding processes. In 2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC 2015. Procedia Manufacturing Elsevier.

    Google Scholar 

  • Moayyedian, M., Abhary, K., & Marian, R. (2015b). New design feature of mold in injection molding for scrap reduction. In 2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC 2015 (pp. 241–245). Procedia Manufacturing Elsevier.

    Google Scholar 

  • Oktem, H., Erzurumlu, T., & Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4), 1271–1278.

    Article  Google Scholar 

  • Ozcelik, B., Kuram, E., & Topal, M. M. (2012). Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. International Communications in Heat and Mass Transfer, 39(2), 275–281.

    Article  Google Scholar 

  • Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693.

    Article  Google Scholar 

  • Pomerleau, J., & Sanschagrin, B. (2006). Injection molding shrinkage of PP: experimental progress. Polymer Engineering and Science, 46(9), 1275–1283.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource Allocation. RWS Publications, USA.

    Google Scholar 

  • Saghafian, S., & Hejazi, S. R. (2005). Multi-criteria group decision making using a modified fuzzy TOPSIS procedure. In International Conference on Computational Intelligence for Modelling, Control and Automation.

    Google Scholar 

  • Shen, Y.-K., Wu, C.-W., Yu, Y.-F., & Chung, H.-W. (2008). Analysis for optimal gate design of thin-walled injection molding. International Communications in Heat and Mass Transfer, 35(6), 728–734.

    Article  Google Scholar 

  • Shi, H., Xie, S., & Wang, X. (2013). A warpage optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy. International Journal of Advanced Manufacturing Technology, 65(1–4), 343–353.

    Article  Google Scholar 

  • Song, M. C., Liu, Z., Wang, M. J., Yu, T. M., & Zhao, D. Y. (2007). Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. Journal of Materials Processing Technology, 187, 668–671.

    Article  Google Scholar 

  • Suwannasri, S., & Sirovetnukul, R. (2013). The defects reduction in injection molding by fuzzy logic based machine selection system. World Academy of Science, Engineering and Technology,74, 626–634.

    Google Scholar 

  • Toe, C. (2001). Shrinkage behavior and optimization of injection molded parts studied by the Taguchi method. Polymer Engineering and Science, 41(5), 703–711.

    Article  Google Scholar 

  • Torfi, F., Farahani, R. Z., & Rezapour, S. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 10(2), 520–528.

    Article  Google Scholar 

  • Tosello, G., Gava, A., Hansen, H. N., & Lucchetta, G. (2010). Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers. International Journal of Advanced Manufacturing Technology, 47(1–4), 81–97.

    Article  Google Scholar 

  • Tsai, K.-M., Hsieh, C.-Y., & Lo, W.-C. (2009). A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 209(7), 3469–3477.

    Article  Google Scholar 

  • Tsai, K.-M. (2013). Runner design to improve quality of plastic optical lens. International Journal of Advanced Manufacturing Technology, 66(1–4), 523–536.

    Article  Google Scholar 

  • Tsoi, H.-P., & Gao, F. (1999). Control of Injection velocity using a fuzzy logic rule-based controller for thermoplastics injection molding. Polymer Engineering and Science, 39(1), 3–17.

    Article  Google Scholar 

  • Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: an overview of applications. European Journal of operational research, 169(1), 1–29.

    Article  MathSciNet  Google Scholar 

  • Xie, P., Guo, F., Jiao, Z., Ding, Y., & Yang, W. (2014). Effect of gate size on the melt filling behavior and residual stress of injection molded parts. Materials and Design, 53, 366–372.

    Article  Google Scholar 

  • Xu, Y., Zhang, Q., Zhang, W., & Zhang, P. (2014). Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. International Journal of Advanced Manufacturing Technology.

    Google Scholar 

  • Xu, Z. (2007). Group decision making with triangular fuzzy linguistic variables. In Department of Management Science and Engineering School of Economics and Management Tsinghua University, Beijing 100084, China.

    Google Scholar 

  • Yang, K., & El-Haik, B. S. (2009). Design for six sigma: a roadmap for product development. McGraw-Hill Companies.

    Google Scholar 

  • Yin, F., Maoa, H., Hua, L., Guo, W., & Shu, M. (2011). Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials and Design, 32(4), 1844–1850.

    Article  Google Scholar 

  • Zhao, P., Zhou, H., Li, Y., & Li, D. (2010). Process parameters optimization of injection molding using a fast strip analysis as a surrogate model. International Journal of Advanced Manufacturing Technology, 49(9–12), 949–959.

    Article  Google Scholar 

  • Zhao, P., Zhou, H., He, Y., Cai, K., & Fu, J. (2014). A nondestructive online method for monitoring the injection molding process by collecting and analyzing machine running data. International Journal of Advanced Manufacturing Technology, 72(5–8), 765–777.

    Article  Google Scholar 

  • Zhou, H. (2013). Computer modeling for injection molding.Wiley, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moayyedian, M. (2019). Injection Molding Process Optimization Based on Fuzzy Quality Evaluation. In: Intelligent Optimization of Mold Design and Process Parameters in Injection Molding. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03356-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03356-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03355-2

  • Online ISBN: 978-3-030-03356-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics