Skip to main content

Literature Review and Research Objectives

  • Chapter
  • First Online:
  • 1032 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Injection molding is a significant manufacturing process which represents more than 70% of production among the components of consumer products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agazzi, A., Sobotka, V., Goff, R. L., Garcia, D., & Jarny, Y. (2010). A methodology for the design of effective cooling system in injection moulding. International Journal of Material Forming, 3(1), 13–16.

    Article  Google Scholar 

  • Ahmad, A. H., Leman, Z., Azmir, M. A., Muhamad, K. F., Harun, W. S. W, Juliawati, A., & Alias, A. B. S. (2009). Optimization of warpage defect in injection moulding process using ABS material. In Third Asia International Conference on Modelling & Simulation (pp. 470−474).

    Google Scholar 

  • Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(9), 6218–6224.

    Article  Google Scholar 

  • Altan, M. (2010) Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials and Design, 31, 599–604.

    Article  Google Scholar 

  • Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2013). Improving injection moulding processes using experimental design. World Academy of Science, Engineering and Technology, 75, 3–28.

    Google Scholar 

  • An, C.-C., & Chen, R.-H. (2008). The experimental study on the defects occurrence of SL mold in injection molding. Journal of Materials Processing Technology, 201(1–3), 706–709.

    Article  Google Scholar 

  • Bickerton, S., & Abdullah, M. Z. (2003). Modeling and evaluation of the filling stage of injection/compression moulding. Composites Science and Technology, 63(10), 1359–1375.

    Article  Google Scholar 

  • Bikas, A., Pantelelis, N., & Kanarachos, A. (2002). Computational tools for the optimal design of the injection moulding process. Journal of Materials Processing Technology, 122(1), 112–126.

    Article  Google Scholar 

  • Calhoun, D. A. R., & Golmanavich, J. (2002). Plastics technician’s toolbox-extrusion-fundamental skills and polymer science. Ron Jon.

    Google Scholar 

  • Chen, R. S., Lee, H. H., & Yu, C. Y. (1997). Application of Taguchi’s method on the optimal process design of an injection molded PC/PBT automobile bumper. Composite Structures, 39(3–4), 209–214.

    Article  Google Scholar 

  • Chen, W., Wang, M., Fu, G., & Chen, C. (2008). Optimization of plastic injection molding process via Taguchi’s parameter design method, BPNN, and DFP. In Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming (pp. 3315–3321). IEEE.

    Google Scholar 

  • Chen, W.-C., Liou, P.-H., & Chou, S.-C. (2014). An integrated parameter optimization system for MIMO plastic injection molding using soft computing. International Journal of Advanced Manufacturing Technology, 73(9–12), 1465–1474.

    Article  Google Scholar 

  • Chen, M.-Y., Tzeng, H.-W., Chen, Y.-C., & Chen, S.-C. (2008). The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 47(1), 119–126.

    Article  Google Scholar 

  • Cheng, J., Liu, Z., & Tan, J. (2012). Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. International Journal of Advanced Manufacturing Technology, 66(5–8), 907–916.

    Article  Google Scholar 

  • Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228.

    Article  Google Scholar 

  • Chiang, K.-T., & Chang, F.-P. (2007). Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology. International Journal of Advanced Manufacturing Technology, 35(5–6), 468–479.

    Article  Google Scholar 

  • Choi, D.-S., & Im, Y.-T. (1999). Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding. Composite Structures, 47(1–4), 655–665.

    Article  Google Scholar 

  • Dai, W., Liu, P., & Wang, X. (2002). An approved mold pin gate and its flow pattern in the cavity. Journal of Injection Moulding Technology, 6(2), 115–119.

    Google Scholar 

  • Dang, X.-P. (2013). General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory,41.

    Google Scholar 

  • Deng, Y.-M., Zheng, D., Sun, B.-S., & Zhong, H.-D. (2008). Injection molding optimization for minimizing the defects of weld lines. Polymer-Plastics Technology and Engineering, 47(9), 943–952.

    Article  Google Scholar 

  • Dimla, D. E., Camilotto, M., & Miani, F. (2005). Design and optimisation of conformal cooling channels in injection moulding tools. Journal of Materials Processing Technology, 164–165, 1294–1300.

    Article  Google Scholar 

  • Ekmekçioğlu, M., Kaya, T., & Kahraman, C. (2010). Fuzzy multicriteria disposal method and site selection for municipal solid waste. Waste Management, 30(8–9), 1729–1736.

    Article  Google Scholar 

  • Erzurumlu, T., & Ozcelik, B. (2006). Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method. Materials and Design, 27(10), 853–861.

    Article  Google Scholar 

  • Fisher, J.M. (2003). Handbook of molded part shrinkage and warpage. Plastics design library.

    Google Scholar 

  • Goodship, V. (2004). Troubleshooting injection moulding (Vol. 15). iSmithers Rapra Publishing.

    Google Scholar 

  • Gokey, J., & Harris, T. (2004). An investigation into the gate location and its effects on product quality in injection molding. In: Annual technical conference—ANTEC, Conference Proceedings. Society of Plastics Engineers, Chicago

    Google Scholar 

  • Guoa, W., Maoa, H., & Bei Lia, X. G. (2014). Influence of processing parameters on molding process in microcellular injection molding. In 11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October 2014 (pp. 670–675). Nagoya, Japan: Nagoya Congress Center.

    Google Scholar 

  • Harper, C. A. (1999). Modern plastics handbook. Lowell: University of Massachusetts.

    Google Scholar 

  • He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: a fuzzy-neuro approach. Journal of Intelligent Manufacturing,9(1), 17–27.

    Article  Google Scholar 

  • Ho, J., Chu, K., & Mok, C. (2005). Minimizing manufacturing costs for thin injection molded plastic components. The International Journal of Advanced Manufacturing Technology, 26(5–6), 517–526.

    Article  Google Scholar 

  • Huang, M.-C., & Tai, C.-C. (2001). The effective factors in the warpage problem of an injection-molded part with a thin shell feature. Journal of Materials Processing Technology, 110(1), 1–9.

    Article  Google Scholar 

  • Jui-Ming, L., & Wang, P.-J. (2002). Self-learning control for injection molding based on neural networks optimization. Journal of Injection Molding Technology, 6(1), 58–71.

    Google Scholar 

  • Kazmer, D., Lotti, C., Bretas, R. E. S., & Zhu, L. (2004). Tuning and control of dimensional consistency in molded products. Advances in Polymer Technology, 23(3), 163–175.

    Article  Google Scholar 

  • Khoshooee, N., & Coates, P. D. (1998). Application of the Taguchi method for consistent.

    Google Scholar 

  • Kima, H. S., Sonb, J. S., & Imc, Y. T. (2003). Gate location design in injection molding of an automobile junction box with integral hinges. Journal Mater Process Technology,140, 110–115.

    Article  Google Scholar 

  • Kitayama, S., Onuki, R., & Yamazaki, K. (2014). Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. International Journal of Advanced Manufacturing Technology, 72(5–8), 827–838.

    Article  Google Scholar 

  • Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z. B., & Turng, L.-S. (2006). Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. Plastics, Rubber and Composites, 35(5), 198–209.

    Article  Google Scholar 

  • Kwak, T. S., Suzuki, T., Bae, W. B., Uehara, Y., & Ohmoria, H. (2005). Application of neural network and computer simulation to improve surface profile of injection molding optic lens. Journal of Materials Processing Technology, 170(1–2), 24–31.

    Article  Google Scholar 

  • Lee, K. S., & Lin, J. C. (2006). Design of the runner and gating system parameters for a multi‐cavity injection mould using FEM and neural network. International Journal Of Advanced Manufacturing Technology, 27, 1089–1096.

    Article  Google Scholar 

  • Li, H., Guo, Z., & Li, D. (2007). Reducing the effects of weldlines on appearance of plastic products by Taguchi experimental method. International Journal of Advanced Manufacturing Technology, 32(9–10), 927–931.

    Article  Google Scholar 

  • Li, X.-P., Zhao, G.-Q., & Yang, C. (2014). Effect of mold temperature on motion behavior of short glass fibers in injection molding process. International Journal of Advanced Manufacturing Technology, 73(5–8), 639–645.

    Article  Google Scholar 

  • Liao, S. J., & Hsieh, W. H. (2004). Shrinkage and warpage prediction of injection-molded thin-wall parts using artificial neural networks. Polymer Engineering & Science, 44(11), 2029–2040.

    Article  Google Scholar 

  • Liao, S. J., Chang, D. Y., Chen, H. J., Tsou, L. S., Ho, J. R., Yau, H. T., et al. (2004). Optimal process conditions of shrinkage and warpage of thin-wall parts. Polymer Engineering & Science, 44(5), 917–928.

    Article  Google Scholar 

  • Lih, S. T., Peic, M., & Bradley, D. K. (2002). Process simulation and optimization for injection molding-experimental verifications and field applications. Journal of Injection Molding Technology, 6(2), 143–155.

    Google Scholar 

  • Liu, S.-J., & Chang, J.-H. (2000). Application of the Taguchi method to optimize the surface quality of gas assistant injection molding composites. Journal of Reinforced Plastics and Composites, 19(17), 1352–1362.

    Article  Google Scholar 

  • Lo, W. C., Tsai, K. M., & Hsieh, C. Y. (2009). Six sigma approach to improve surface precision of optical lenses in the injection-molding process. International Journal of Advanced Manufacturing Technology, 41(9–10), 885–896.

    Article  Google Scholar 

  • Lotti, C., Ueki, M. M., & Bretas, R. E. S. (2002). Prediction of the shrinkage of injection molded iPP plaques using artificial neural networks. Journal of Injection Molding Technology, 6(3), 157–176.

    Google Scholar 

  • Mathivanan, D., & Parthasarathy, N. S. (2009). Prediction of sink depths using nonlinear modeling of injection molding variables. International Journal of Advanced Manufacturing Technology, 43(7–8), 654–663.

    Article  Google Scholar 

  • Mekhilef, N., Ait-Kadi, A., & Ajji, A. (1995). Weld lines in injection-moulded immiscible blends: model predictions and experimental results. Polymer, 36(10), 2033–2042.

    Article  Google Scholar 

  • Meza, O., Vega, E., & Pérez, E. (2013). Influential factors on the outer lens color in an industrial injection molding process. International Journal of Advanced Manufacturing Technology, 66(1–4), 455–460.

    Article  Google Scholar 

  • Modraka, V., & Mandulakb, J. (2013). Exploration of impact of technological parameters on surface gloss of plastic parts. In 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

    Article  Google Scholar 

  • Oktem, H., Erzurumlu, T., & Col, M. (2005). A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. International of Advanced Manufacturing Technology, 28(7–8), 694–700.

    Article  Google Scholar 

  • Oktem, H., Erzurumlu, T., & Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4), 1271–1278.

    Article  Google Scholar 

  • Oroszlány, Á., & Kovács, J. G. (2010). Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. International Communications in Heat and Mass Transfer, 37, 766–769.

    Article  Google Scholar 

  • Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of materials processing technology, 171(3), 437–445.

    Article  Google Scholar 

  • Ozcelik, B., & Sonat, I. (2009). Warpage and structural analysis of thin shell plastic in the plastic injection molding. Materials and Design, 30(2), 367–375.

    Article  Google Scholar 

  • Ozcelik, B., Ozbay, A., & Demirbas, E. (2010). Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. International Communications in Heat and Mass Transfer, 37(9), 1359–1365.

    Article  Google Scholar 

  • Patil, S. K. & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693.

    Article  Google Scholar 

  • Pirc, N., Schmidt, F., Mongeau, M., Bugarin, F., & Chinesta, F. (2009). Optimization of 3D cooling channels in injection molding using DRBEM and model reduction. International Journal of Material Forming, 2(1), 271–274.

    Article  Google Scholar 

  • Pomerleau, J., & Sanschagrin, B. (2006). Injection molding shrinkage of PP: experimental progress. Polymer Engineering & Science, 46(9), 1275–1283.

    Article  Google Scholar 

  • Pye, R. G. W. (1989). Injection mould design: A textbook for the novice and a design manual for the thermoplastice industry. Harlow, Essex England: Longman Scientific & Technical.

    Google Scholar 

  • Rutkauskas, Ž., & Bargelis, A. (2007). Knowledge–based method for gate and cold runner definition in injection mold design. Mechanics, 66(4), 49–54.

    Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource Allocation. RWS Publications, USA.

    Google Scholar 

  • Shen, C., Wang, L., Cao, W., & Qian, L. (2007). Investigation of the effect of molding variables on sink marks of plastic injection molded parts using Taguchi DOE technique. Polymer-Plastics Technology and Engineering, 46(3), 219–225.

    Article  Google Scholar 

  • Song, M. C., Liu, Z., Wang, M. J., Yu, T. M., & Zhao, D. Y. (2007). Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. Journal of Materials Processing Technology, 187, 668–671.

    Article  Google Scholar 

  • Subramanian, N. R., Tingyu, L., & Seng, Y. A. (2005). Optimizing warpage analysis for an optical housing. Mechatronics, 15(1), 111–127.

    Article  Google Scholar 

  • Tang, S. H., Tan, Y. J., Sapuan, S. M., Sulaiman, S., Ismail, N., & Samin, R. (2007). The use of Taguchi method in the design of plastic injection mould for reducing warpage. Journal of Materials Processing Technology, 182(1–3), 418–426.

    Article  Google Scholar 

  • Toe, C. (2001). Shrinkage behavior and optimization of injection molded parts studied by the Taguchi Method. Polymer Engineering & Science, 41(5), 703–711.

    Article  Google Scholar 

  • Torfi, F., Farahani, R. Z. & Rezapour, S. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 10(2), 520–528.

    Article  Google Scholar 

  • Tosello, G., Gava, A., Hansen, H. N., & Lucchetta, G. (2010). Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers. The International Journal of Advanced Manufacturing Technology, 47(1–4), 81–97.

    Article  Google Scholar 

  • Tsai, K.-M., Hsieh, C.-Y., & Lo, W.-C. (2009). A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 209(7), 3469–3477.

    Article  Google Scholar 

  • Tsoi, H.-P., & Gao, F. (1999). Control of injection velocity using a fuzzy logic ru le-based controller for thermoplastics injection molding. Polymer Engineering & Science, 39(1), 3–17.

    Article  Google Scholar 

  • Urval, R., Lee, S., Atre, S. V., Park, S.-J., & German, R. M. (2008). Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: Part I. Primary design parameters. Powder Metallurgy, 51(2), 133–142.

    Article  Google Scholar 

  • Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: an overview of applications. European Journal of operational research, 169(1), 1–29.

    Article  MathSciNet  Google Scholar 

  • Viana, J. C., & Cunha, A. M. (2002). The impact behavior of weld-lines in injection molding. Journal of Injection Molding Technology, 6(4), 259–271.

    Google Scholar 

  • Wang, M.-W., & Fu, G.-L. (2008). Optimal molding parameter design of PLA micro lancet needles using Taguchi method (pp. 2731–2735).

    Google Scholar 

  • Westerdale, S. (2006). Multivariate process analysis utilizing six sigma methodologies for the prediction of injection molded part quality. University of Massachusetts Lowell.

    Google Scholar 

  • Wu, C.-H., & Huang, Y.-J. (2007). The influence of cavity deformation on the shrinkage and warpage of an injection-molded part. International Journal of Advanced Manufacturing Technology, 32(11–12), 1144–1154.

    Article  Google Scholar 

  • Wu, C. H., & Liang, W. J. (2005). Effects of geometry and injection-molding parameters on weld-line strength. Polymer Engineering & Science, 45(7), 1021–1030.

    Article  Google Scholar 

  • Xie, P., Guo, F., Jiao, Z., Ding, Y., & Yang, W. (2014). Effect of gate size on the melt filling behavior and residual stress of injection molded parts, Materials and Design, 53, 366–372.

    Article  Google Scholar 

  • Yang, C., Su, L., Huang, C., Huang, H. X., Castro, J. M., & Yi, A. Y. (2011). Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens. Advances in Polymer Technology, 30(1), 51–61.

    Article  Google Scholar 

  • Yang, Y. K., Shie, J. R., Liao, H. T., Wen, J. L., & Yang, R. T. (2008). A study of Taguchi and design of experiments method in injection molding process for polypropylene components. Journal of Reinforced Plastics and Composites, 27(8), 819–834.

    Article  Google Scholar 

  • Yen, C., Lin, J. C., Li, W., & Huang, M. F. (2006). An abductive neural network approach to the design of runner dimensions for the minimization of warpage in injection mouldings. Journal of Materials Processing Technology, 174(1–3), 22–28.

    Article  Google Scholar 

  • Yin, F., Maoa, H., Hua, L., Guo, W., & Shu, M. (2011). Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials and Design, 32(4), 1844–1850.

    Article  Google Scholar 

  • Yousef, A., Mehdi, M., Zeinab, H., & Lida, M. (2013). Reducing warpage in injection moulding processes using Taguchi method approach: ANOVA. In Proceedings of the IASTED International Conference, Engineering and Applied Science (pp. 227–232). ACTA Press.

    Google Scholar 

  • Zhai, M., Lam, Y. C., & Au, C. K. (2006). Runner sizing and weld line positioning for plastics injection moulding with multiple gates. Engineering with Computers, 21(3), 218–224.

    Article  Google Scholar 

  • Zhang, Y., Deng, Y.-M., & Sun, B.-S. (2009). Injection molding warpage optimization based on a mode-pursuing sampling method. Polymer-Plastics Technology and Engineering, 48(7), 767–774.

    Article  Google Scholar 

  • Zhao, P., Zhou, H., Li, Y., & Li, D. (2010). Process parameters optimization of injection molding using a fast strip analysis as a surrogate model. The International Journal of Advanced Manufacturing Technology, 49(9–12), 949–959.

    Article  Google Scholar 

  • Zhen-Yong, Z., Zheng-Chao, G., & Jiao-Ying, S. (2000). Research on integrated design techniques for injection mold runner system. Journal of Computer Aided Design & Computer Graphics, 12(1), 6–10.

    Google Scholar 

  • Zhou, H. (2013). Computer modeling for injection molding. Wiley, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moayyedian, M. (2019). Literature Review and Research Objectives. In: Intelligent Optimization of Mold Design and Process Parameters in Injection Molding. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03356-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03356-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03355-2

  • Online ISBN: 978-3-030-03356-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics