Literature Review and Research Objectives

  • Mehdi Moayyedian
Part of the Springer Theses book series (Springer Theses)


Injection molding is a significant manufacturing process which represents more than 70% of production among the components of consumer products.


Injection Molding Plastic Defects Mold Design Weld Line Moldability Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agazzi, A., Sobotka, V., Goff, R. L., Garcia, D., & Jarny, Y. (2010). A methodology for the design of effective cooling system in injection moulding. International Journal of Material Forming, 3(1), 13–16.CrossRefGoogle Scholar
  2. Ahmad, A. H., Leman, Z., Azmir, M. A., Muhamad, K. F., Harun, W. S. W, Juliawati, A., & Alias, A. B. S. (2009). Optimization of warpage defect in injection moulding process using ABS material. In Third Asia International Conference on Modelling & Simulation (pp. 470−474).Google Scholar
  3. Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(9), 6218–6224.CrossRefGoogle Scholar
  4. Altan, M. (2010) Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials and Design, 31, 599–604. CrossRefGoogle Scholar
  5. Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2013). Improving injection moulding processes using experimental design. World Academy of Science, Engineering and Technology, 75, 3–28.Google Scholar
  6. An, C.-C., & Chen, R.-H. (2008). The experimental study on the defects occurrence of SL mold in injection molding. Journal of Materials Processing Technology, 201(1–3), 706–709.CrossRefGoogle Scholar
  7. Bickerton, S., & Abdullah, M. Z. (2003). Modeling and evaluation of the filling stage of injection/compression moulding. Composites Science and Technology, 63(10), 1359–1375.CrossRefGoogle Scholar
  8. Bikas, A., Pantelelis, N., & Kanarachos, A. (2002). Computational tools for the optimal design of the injection moulding process. Journal of Materials Processing Technology, 122(1), 112–126.CrossRefGoogle Scholar
  9. Calhoun, D. A. R., & Golmanavich, J. (2002). Plastics technician’s toolbox-extrusion-fundamental skills and polymer science. Ron Jon.Google Scholar
  10. Chen, R. S., Lee, H. H., & Yu, C. Y. (1997). Application of Taguchi’s method on the optimal process design of an injection molded PC/PBT automobile bumper. Composite Structures, 39(3–4), 209–214.CrossRefGoogle Scholar
  11. Chen, W., Wang, M., Fu, G., & Chen, C. (2008). Optimization of plastic injection molding process via Taguchi’s parameter design method, BPNN, and DFP. In Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming (pp. 3315–3321). IEEE.Google Scholar
  12. Chen, W.-C., Liou, P.-H., & Chou, S.-C. (2014). An integrated parameter optimization system for MIMO plastic injection molding using soft computing. International Journal of Advanced Manufacturing Technology, 73(9–12), 1465–1474.CrossRefGoogle Scholar
  13. Chen, M.-Y., Tzeng, H.-W., Chen, Y.-C., & Chen, S.-C. (2008). The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 47(1), 119–126.CrossRefGoogle Scholar
  14. Cheng, J., Liu, Z., & Tan, J. (2012). Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. International Journal of Advanced Manufacturing Technology, 66(5–8), 907–916.CrossRefGoogle Scholar
  15. Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228.CrossRefGoogle Scholar
  16. Chiang, K.-T., & Chang, F.-P. (2007). Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology. International Journal of Advanced Manufacturing Technology, 35(5–6), 468–479.CrossRefGoogle Scholar
  17. Choi, D.-S., & Im, Y.-T. (1999). Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding. Composite Structures, 47(1–4), 655–665.CrossRefGoogle Scholar
  18. Dai, W., Liu, P., & Wang, X. (2002). An approved mold pin gate and its flow pattern in the cavity. Journal of Injection Moulding Technology, 6(2), 115–119.Google Scholar
  19. Dang, X.-P. (2013). General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory,41.Google Scholar
  20. Deng, Y.-M., Zheng, D., Sun, B.-S., & Zhong, H.-D. (2008). Injection molding optimization for minimizing the defects of weld lines. Polymer-Plastics Technology and Engineering, 47(9), 943–952.CrossRefGoogle Scholar
  21. Dimla, D. E., Camilotto, M., & Miani, F. (2005). Design and optimisation of conformal cooling channels in injection moulding tools. Journal of Materials Processing Technology, 164–165, 1294–1300.CrossRefGoogle Scholar
  22. Ekmekçioğlu, M., Kaya, T., & Kahraman, C. (2010). Fuzzy multicriteria disposal method and site selection for municipal solid waste. Waste Management, 30(8–9), 1729–1736.CrossRefGoogle Scholar
  23. Erzurumlu, T., & Ozcelik, B. (2006). Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method. Materials and Design, 27(10), 853–861.CrossRefGoogle Scholar
  24. Fisher, J.M. (2003). Handbook of molded part shrinkage and warpage. Plastics design library.Google Scholar
  25. Goodship, V. (2004). Troubleshooting injection moulding (Vol. 15). iSmithers Rapra Publishing.Google Scholar
  26. Gokey, J., & Harris, T. (2004). An investigation into the gate location and its effects on product quality in injection molding. In: Annual technical conference—ANTEC, Conference Proceedings. Society of Plastics Engineers, ChicagoGoogle Scholar
  27. Guoa, W., Maoa, H., & Bei Lia, X. G. (2014). Influence of processing parameters on molding process in microcellular injection molding. In 11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October 2014 (pp. 670–675). Nagoya, Japan: Nagoya Congress Center.Google Scholar
  28. Harper, C. A. (1999). Modern plastics handbook. Lowell: University of Massachusetts.Google Scholar
  29. He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: a fuzzy-neuro approach. Journal of Intelligent Manufacturing,9(1), 17–27.CrossRefGoogle Scholar
  30. Ho, J., Chu, K., & Mok, C. (2005). Minimizing manufacturing costs for thin injection molded plastic components. The International Journal of Advanced Manufacturing Technology, 26(5–6), 517–526.CrossRefGoogle Scholar
  31. Huang, M.-C., & Tai, C.-C. (2001). The effective factors in the warpage problem of an injection-molded part with a thin shell feature. Journal of Materials Processing Technology, 110(1), 1–9.CrossRefGoogle Scholar
  32. Jui-Ming, L., & Wang, P.-J. (2002). Self-learning control for injection molding based on neural networks optimization. Journal of Injection Molding Technology, 6(1), 58–71.Google Scholar
  33. Kazmer, D., Lotti, C., Bretas, R. E. S., & Zhu, L. (2004). Tuning and control of dimensional consistency in molded products. Advances in Polymer Technology, 23(3), 163–175.CrossRefGoogle Scholar
  34. Khoshooee, N., & Coates, P. D. (1998). Application of the Taguchi method for consistent.Google Scholar
  35. Kima, H. S., Sonb, J. S., & Imc, Y. T. (2003). Gate location design in injection molding of an automobile junction box with integral hinges. Journal Mater Process Technology,140, 110–115.CrossRefGoogle Scholar
  36. Kitayama, S., Onuki, R., & Yamazaki, K. (2014). Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. International Journal of Advanced Manufacturing Technology, 72(5–8), 827–838.CrossRefGoogle Scholar
  37. Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z. B., & Turng, L.-S. (2006). Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. Plastics, Rubber and Composites, 35(5), 198–209.CrossRefGoogle Scholar
  38. Kwak, T. S., Suzuki, T., Bae, W. B., Uehara, Y., & Ohmoria, H. (2005). Application of neural network and computer simulation to improve surface profile of injection molding optic lens. Journal of Materials Processing Technology, 170(1–2), 24–31.CrossRefGoogle Scholar
  39. Lee, K. S., & Lin, J. C. (2006). Design of the runner and gating system parameters for a multi‐cavity injection mould using FEM and neural network. International Journal Of Advanced Manufacturing Technology, 27, 1089–1096.CrossRefGoogle Scholar
  40. Li, H., Guo, Z., & Li, D. (2007). Reducing the effects of weldlines on appearance of plastic products by Taguchi experimental method. International Journal of Advanced Manufacturing Technology, 32(9–10), 927–931.CrossRefGoogle Scholar
  41. Li, X.-P., Zhao, G.-Q., & Yang, C. (2014). Effect of mold temperature on motion behavior of short glass fibers in injection molding process. International Journal of Advanced Manufacturing Technology, 73(5–8), 639–645.CrossRefGoogle Scholar
  42. Liao, S. J., & Hsieh, W. H. (2004). Shrinkage and warpage prediction of injection-molded thin-wall parts using artificial neural networks. Polymer Engineering & Science, 44(11), 2029–2040.CrossRefGoogle Scholar
  43. Liao, S. J., Chang, D. Y., Chen, H. J., Tsou, L. S., Ho, J. R., Yau, H. T., et al. (2004). Optimal process conditions of shrinkage and warpage of thin-wall parts. Polymer Engineering & Science, 44(5), 917–928.CrossRefGoogle Scholar
  44. Lih, S. T., Peic, M., & Bradley, D. K. (2002). Process simulation and optimization for injection molding-experimental verifications and field applications. Journal of Injection Molding Technology, 6(2), 143–155.Google Scholar
  45. Liu, S.-J., & Chang, J.-H. (2000). Application of the Taguchi method to optimize the surface quality of gas assistant injection molding composites. Journal of Reinforced Plastics and Composites, 19(17), 1352–1362.CrossRefGoogle Scholar
  46. Lo, W. C., Tsai, K. M., & Hsieh, C. Y. (2009). Six sigma approach to improve surface precision of optical lenses in the injection-molding process. International Journal of Advanced Manufacturing Technology, 41(9–10), 885–896.CrossRefGoogle Scholar
  47. Lotti, C., Ueki, M. M., & Bretas, R. E. S. (2002). Prediction of the shrinkage of injection molded iPP plaques using artificial neural networks. Journal of Injection Molding Technology, 6(3), 157–176.Google Scholar
  48. Mathivanan, D., & Parthasarathy, N. S. (2009). Prediction of sink depths using nonlinear modeling of injection molding variables. International Journal of Advanced Manufacturing Technology, 43(7–8), 654–663.CrossRefGoogle Scholar
  49. Mekhilef, N., Ait-Kadi, A., & Ajji, A. (1995). Weld lines in injection-moulded immiscible blends: model predictions and experimental results. Polymer, 36(10), 2033–2042.CrossRefGoogle Scholar
  50. Meza, O., Vega, E., & Pérez, E. (2013). Influential factors on the outer lens color in an industrial injection molding process. International Journal of Advanced Manufacturing Technology, 66(1–4), 455–460.CrossRefGoogle Scholar
  51. Modraka, V., & Mandulakb, J. (2013). Exploration of impact of technological parameters on surface gloss of plastic parts. In 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering.CrossRefGoogle Scholar
  52. Oktem, H., Erzurumlu, T., & Col, M. (2005). A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. International of Advanced Manufacturing Technology, 28(7–8), 694–700.CrossRefGoogle Scholar
  53. Oktem, H., Erzurumlu, T., & Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4), 1271–1278.CrossRefGoogle Scholar
  54. Oroszlány, Á., & Kovács, J. G. (2010). Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. International Communications in Heat and Mass Transfer, 37, 766–769.CrossRefGoogle Scholar
  55. Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of materials processing technology, 171(3), 437–445.CrossRefGoogle Scholar
  56. Ozcelik, B., & Sonat, I. (2009). Warpage and structural analysis of thin shell plastic in the plastic injection molding. Materials and Design, 30(2), 367–375.CrossRefGoogle Scholar
  57. Ozcelik, B., Ozbay, A., & Demirbas, E. (2010). Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. International Communications in Heat and Mass Transfer, 37(9), 1359–1365.CrossRefGoogle Scholar
  58. Patil, S. K. & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693.CrossRefGoogle Scholar
  59. Pirc, N., Schmidt, F., Mongeau, M., Bugarin, F., & Chinesta, F. (2009). Optimization of 3D cooling channels in injection molding using DRBEM and model reduction. International Journal of Material Forming, 2(1), 271–274.CrossRefGoogle Scholar
  60. Pomerleau, J., & Sanschagrin, B. (2006). Injection molding shrinkage of PP: experimental progress. Polymer Engineering & Science, 46(9), 1275–1283.CrossRefGoogle Scholar
  61. Pye, R. G. W. (1989). Injection mould design: A textbook for the novice and a design manual for the thermoplastice industry. Harlow, Essex England: Longman Scientific & Technical.Google Scholar
  62. Rutkauskas, Ž., & Bargelis, A. (2007). Knowledge–based method for gate and cold runner definition in injection mold design. Mechanics, 66(4), 49–54.Google Scholar
  63. Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource Allocation. RWS Publications, USA.Google Scholar
  64. Shen, C., Wang, L., Cao, W., & Qian, L. (2007). Investigation of the effect of molding variables on sink marks of plastic injection molded parts using Taguchi DOE technique. Polymer-Plastics Technology and Engineering, 46(3), 219–225.CrossRefGoogle Scholar
  65. Song, M. C., Liu, Z., Wang, M. J., Yu, T. M., & Zhao, D. Y. (2007). Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. Journal of Materials Processing Technology, 187, 668–671.CrossRefGoogle Scholar
  66. Subramanian, N. R., Tingyu, L., & Seng, Y. A. (2005). Optimizing warpage analysis for an optical housing. Mechatronics, 15(1), 111–127.CrossRefGoogle Scholar
  67. Tang, S. H., Tan, Y. J., Sapuan, S. M., Sulaiman, S., Ismail, N., & Samin, R. (2007). The use of Taguchi method in the design of plastic injection mould for reducing warpage. Journal of Materials Processing Technology, 182(1–3), 418–426.CrossRefGoogle Scholar
  68. Toe, C. (2001). Shrinkage behavior and optimization of injection molded parts studied by the Taguchi Method. Polymer Engineering & Science, 41(5), 703–711.CrossRefGoogle Scholar
  69. Torfi, F., Farahani, R. Z. & Rezapour, S. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 10(2), 520–528.CrossRefGoogle Scholar
  70. Tosello, G., Gava, A., Hansen, H. N., & Lucchetta, G. (2010). Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers. The International Journal of Advanced Manufacturing Technology, 47(1–4), 81–97.CrossRefGoogle Scholar
  71. Tsai, K.-M., Hsieh, C.-Y., & Lo, W.-C. (2009). A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 209(7), 3469–3477.CrossRefGoogle Scholar
  72. Tsoi, H.-P., & Gao, F. (1999). Control of injection velocity using a fuzzy logic ru le-based controller for thermoplastics injection molding. Polymer Engineering & Science, 39(1), 3–17.CrossRefGoogle Scholar
  73. Urval, R., Lee, S., Atre, S. V., Park, S.-J., & German, R. M. (2008). Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: Part I. Primary design parameters. Powder Metallurgy, 51(2), 133–142.CrossRefGoogle Scholar
  74. Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: an overview of applications. European Journal of operational research, 169(1), 1–29.MathSciNetCrossRefGoogle Scholar
  75. Viana, J. C., & Cunha, A. M. (2002). The impact behavior of weld-lines in injection molding. Journal of Injection Molding Technology, 6(4), 259–271.Google Scholar
  76. Wang, M.-W., & Fu, G.-L. (2008). Optimal molding parameter design of PLA micro lancet needles using Taguchi method (pp. 2731–2735).Google Scholar
  77. Westerdale, S. (2006). Multivariate process analysis utilizing six sigma methodologies for the prediction of injection molded part quality. University of Massachusetts Lowell.Google Scholar
  78. Wu, C.-H., & Huang, Y.-J. (2007). The influence of cavity deformation on the shrinkage and warpage of an injection-molded part. International Journal of Advanced Manufacturing Technology, 32(11–12), 1144–1154.CrossRefGoogle Scholar
  79. Wu, C. H., & Liang, W. J. (2005). Effects of geometry and injection-molding parameters on weld-line strength. Polymer Engineering & Science, 45(7), 1021–1030.CrossRefGoogle Scholar
  80. Xie, P., Guo, F., Jiao, Z., Ding, Y., & Yang, W. (2014). Effect of gate size on the melt filling behavior and residual stress of injection molded parts, Materials and Design, 53, 366–372. CrossRefGoogle Scholar
  81. Yang, C., Su, L., Huang, C., Huang, H. X., Castro, J. M., & Yi, A. Y. (2011). Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens. Advances in Polymer Technology, 30(1), 51–61.CrossRefGoogle Scholar
  82. Yang, Y. K., Shie, J. R., Liao, H. T., Wen, J. L., & Yang, R. T. (2008). A study of Taguchi and design of experiments method in injection molding process for polypropylene components. Journal of Reinforced Plastics and Composites, 27(8), 819–834.CrossRefGoogle Scholar
  83. Yen, C., Lin, J. C., Li, W., & Huang, M. F. (2006). An abductive neural network approach to the design of runner dimensions for the minimization of warpage in injection mouldings. Journal of Materials Processing Technology, 174(1–3), 22–28.CrossRefGoogle Scholar
  84. Yin, F., Maoa, H., Hua, L., Guo, W., & Shu, M. (2011). Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials and Design, 32(4), 1844–1850.CrossRefGoogle Scholar
  85. Yousef, A., Mehdi, M., Zeinab, H., & Lida, M. (2013). Reducing warpage in injection moulding processes using Taguchi method approach: ANOVA. In Proceedings of the IASTED International Conference, Engineering and Applied Science (pp. 227–232). ACTA Press.Google Scholar
  86. Zhai, M., Lam, Y. C., & Au, C. K. (2006). Runner sizing and weld line positioning for plastics injection moulding with multiple gates. Engineering with Computers, 21(3), 218–224.CrossRefGoogle Scholar
  87. Zhang, Y., Deng, Y.-M., & Sun, B.-S. (2009). Injection molding warpage optimization based on a mode-pursuing sampling method. Polymer-Plastics Technology and Engineering, 48(7), 767–774.CrossRefGoogle Scholar
  88. Zhao, P., Zhou, H., Li, Y., & Li, D. (2010). Process parameters optimization of injection molding using a fast strip analysis as a surrogate model. The International Journal of Advanced Manufacturing Technology, 49(9–12), 949–959.CrossRefGoogle Scholar
  89. Zhen-Yong, Z., Zheng-Chao, G., & Jiao-Ying, S. (2000). Research on integrated design techniques for injection mold runner system. Journal of Computer Aided Design & Computer Graphics, 12(1), 6–10.Google Scholar
  90. Zhou, H. (2013). Computer modeling for injection molding. Wiley, Inc.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mehdi Moayyedian
    • 1
  1. 1.School of EngineeringUniversity of South AustraliaAdelaideAustralia

Personalised recommendations