Skip to main content

Bioengineered Plants Can Be an Alternative Source of Omega-3 Fatty Acids for Human Health

  • Chapter
  • First Online:
Plant and Human Health, Volume 2

Abstract

Omega-3 (also called n-3) long-chain polyunsaturated fatty acids have very essential and critical roles in human health due to their multiple health benefits. These important long-chain fatty acids influence a range of health benefits through their cellular, molecular and physiological actions, particularly with respect to the eicosapentaenoic (EPA; 20:5 n-3) and docosahexaenoic (DHA; 22:6 n-3) acids. Essential fatty acids (EFAs) cannot be produced by the human body, as it can be fulfilled through diet only. Marine fish are the major dietary sources of n-3 long-chain polyunsaturated fatty acids, but the increasing demands of fish oil apply huge pressure on declining marine stocks. Recent development in the field of transgenic plants has, however, generated a good deal of excitement among plant biotechnologist, and plants are being looked upon as a potential source for the production of health beneficiary molecules including multicomponent botanical drugs, plant-derived pharmaceuticals, functional foods, dietary supplements and plant-produced recombinant proteins. Many of these products will not only complement conventional pharmaceuticals in the treatment, prevention and diagnosis of diseases but also add value to agriculture and improve the yield quality. An alternative source to achieve the recommended daily intake of EFAs is the need of the hour today. In this chapter, an attempt has, therefore, been made to discuss the impact of omega-3 fatty acid on human health that is facilitated by its biological actions and the new sustainable source in order to produce these fatty acids by the genetic modifications of the plants and their application for health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Agbaga MP, Mandal MN, Anderson RE (2010) Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 51:1624–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad NI, Rozita W, Mahiyuddin W, Mohamad TRT, Ling CY, Daud SF, Hussein NC, Abdullah NA, Shaharudin R, Sulaiman LH (2016) Fish consumption pattern among adults of different ethnics in peninsular Malaysia. Food Nutr Res 60:32697

    Article  PubMed  Google Scholar 

  • Ahmed AA, Balogun KA, Bykova NV, Cheema SK (2014) Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach. Nutr Metab 11:6

    Article  CAS  Google Scholar 

  • Albert CM, Hennekens CH, O’Donnell CJ (1998) Fish consumption and risk of sudden cardiac death. JAMA 279:23–28

    Article  CAS  PubMed  Google Scholar 

  • Amaral JS, Casal S, Pereira JA, Seabra RM, Oliveira BPP (2003) Determination of Sterol and Fatty Acid Compositions, Oxidative Stability, and Nutritional Value of Six Walnut (L.) Cultivars Grown in Portugal. Journal of Agricultural and Food Chemistry 51 (26):7698–7702

    Article  CAS  PubMed  Google Scholar 

  • Ambrosone CB, Freudenheim JL, Sinha R (1998) Breast cancer risk, meat consumption and N-acetyltransferase (NAT2) genetic polymorphisms. Int J Cancer 75:825–830

    Article  CAS  PubMed  Google Scholar 

  • Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58(1):122–137. https://doi.org/10.1139/f00-224

    Article  CAS  Google Scholar 

  • Asif M (2011) Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayerza R, Coates W, Lauria M (2002) Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Sci 81:826–837

    Article  CAS  Google Scholar 

  • Bahramsoltani R, Farzaei MH, Rahim R (2014) Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res 306:601–617

    Article  CAS  PubMed  Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129. https://doi.org/10.1007/BF02186066

    Article  CAS  Google Scholar 

  • Ben Smida MA, Marzouk B, El Cafsi M (2009) The composition of fatty acids in the tissues of Tunisian swordfish (Xiphias gladius). Food Chem 115:522–528

    Article  CAS  Google Scholar 

  • Bere E (2007) Wild berries: a good source of omega-3. Eur J Clin Nutr 61:431–433

    Article  CAS  PubMed  Google Scholar 

  • Bernardo-Gil MG, Grenha J, Santos J, Cardoso P (2002) Supercritical fluid extraction and characterisation of oil from hazelnut. Eur J Lipid Sci Technol 104:402–409

    Article  CAS  Google Scholar 

  • Berntssen MH, Olsvik PA, Torstensen BE, Julshamn K, Midtun T, Goksoyr A, Johansen J, Sigholt T, Joerum N, Jakobsen JV, Lundebye AK, Lock EJ (2010) Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle. Chemosphere 81(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Berti M, Johnson BL, Dash S, Fischer S, Wilckens R (2007) Issues in new crops and new uses. In: Janick J, Whipkey A, Hevia F (eds) Echium: a source of stearidonic acid adapted to the northern Great Plains in the US. ASHS Press, Alexandria, VA, pp 120–125

    Google Scholar 

  • Bezard J, Blond JP, Bernard A, Clouet AP (2003) The metabolism and bioavailability of essential fatty acids in animal and human tissues. Reprod Nutr Dev 34:539–568

    Article  Google Scholar 

  • Bimbo AP (2011) The production and processing of marine oils: the American oil chemists’ society lipid library. http://www.lipidlibrary.aocs.org/processing/marine/index.htm

  • Bioriginal. Echium oil. http://www.bioriginal.com/learning-center/omega-ingredients/plant-sourced/echium-oil-eu/ (accessed 17/11/2014)

  • Birch EE, Garfield S, Castaneda Y, et al (2007) Visual acuity and cognitive outcomes at 4 years of age in a doubleblind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev 83(5):279–284

    Article  CAS  PubMed  Google Scholar 

  • Bocianowski J, Mikolajczyk K, Bartkowiak-Broda I (2012) Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. J Appl Genet 53:27–30

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae – their development and commercialization. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  • Bottino NR (1975) Lipid composition of two species of antarctic krill: euphausia superb and E. Crystallorophis. Comp Biochem Physio L 50B:479–484

    Google Scholar 

  • Breivik H (2007) Long-chain Omega-3 Speciality oils. The Oily Press, Bridgwater

    Book  Google Scholar 

  • Browse J, McConn M, James D Jr, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of α-linolenate. J Biol Chem 22:16345–16351

    Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2004) Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci 10:1–11

    Article  Google Scholar 

  • Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19:221–229

    Article  CAS  PubMed  Google Scholar 

  • Chung CH, Kim JL, Lee YC, Choi YL (1999) Cloning and characterization of a seed-specific o-3 fatty acid desaturase cDNA from Perilla frutescens. Plant Cell Physiol 40:114–118

    Article  CAS  PubMed  Google Scholar 

  • Cladis DP, Kleiner AC, Freiser HH, Santerre CR (2014) Fatty acid profiles of commercially available finfish fillets in the United States. Lipids 49:1005–1018

    Article  CAS  PubMed  Google Scholar 

  • Cressey D (2009) Aquaculture: future fish. Nature 458:398–400

    Article  CAS  PubMed  Google Scholar 

  • Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chenthomas Z, Wolever MS, Jenkins DJA (1993) High a-linolenic acid flaxseed (Linurn usiiaiissimurn): some nutritional properties in humans. Br J Nutr 69:443–453

    Article  CAS  PubMed  Google Scholar 

  • Da Porto C, Decorti D, Tubaro F (2012) Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind Crop Prod 36:401–404

    Article  CAS  Google Scholar 

  • Domergue F, Abbadi A, Zähringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl-CoA D6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo JL, Bocio A, Falcó G, Llobet JM (2007) Benefits and risks of fish consumption part I. a quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology 230:219–226

    Article  CAS  PubMed  Google Scholar 

  • Durand SN, Seminario GM (2009) Status of and trends in the use of small pelagic fish species for reduction fisheries and for human consumption in Peru. In: Hasan MR, Halwart M (eds) Fish as feed inputs for aquaculture: practices, sustainability and implications, FAO fisheries and aquaculture technical paper no. 518. FAO, Rome, pp 325–369

    Google Scholar 

  • Erdal JI, Evensen O, Kaurstad OK, Lillehaug A, Solbakken R, Thorud K (1991) Relationship between diet and immune response in Atlantic salmon (Salmo salar L.) after feeding various levels of ascorbic acid and omega-3 fatty acids. Aquaculture 98:363–379

    Article  CAS  Google Scholar 

  • Ersoy B, Celik M (2009) Essential elements and contaminants in tissues of commercial pelagic fish from the eastern Mediterranean Sea. J Sci Food Agric 89:1615–1621

    Article  CAS  Google Scholar 

  • Food and agriculture organization of the United Nations (2010) The state of world fisheries and aquaculture. Food and Agriculture Organization, Rome

    Google Scholar 

  • Food standards agency (2008) Consumer attitudes survey 2007: England summary report. FSA, London

    Google Scholar 

  • Fotuhi M, Mohassel P, Yaffe K (2009) Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neur 5(3):140–152

    CAS  Google Scholar 

  • Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, Keck PE, Marangell LB, Richardson AJ, Lake J, Stoll AL (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67:1–14

    Article  Google Scholar 

  • Gharibzahedi SMT, Mousavi SM, Hamedi M, Khodaiya F (2012) Comparative analysis of new Persian walnut cultivars: nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Sci Hortic 135:202–209

    Article  CAS  Google Scholar 

  • Gillingham LG, Gustafson JA, Han SY, Jassal DS, Jones PJH (2011) High-oleic rapeseed (canola) and flaxseed oils modulated serum lipids and inflammatory biomarkers in hypercholesteraemic subjects. Br J Nutr 105(3):417–427

    Article  CAS  PubMed  Google Scholar 

  • Guillen MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc 80:755–762

    Article  CAS  Google Scholar 

  • Gupta A, Barrow C, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745. https://doi.org/10.1016/j.biotechadv.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  • Hasler CM (2002) Functional foods: benefits, concerns and challenges—a position paper from the American council on science and health. J Nutr 132(12):3772–3781

    Article  CAS  PubMed  Google Scholar 

  • Heinz E (1993) Biosynthesis of polyunsaturated fatty acids. In: Moore TS Jr (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 33–89

    Google Scholar 

  • Hilditch TP (1956) The chemical constitution of natural fats. Chapman & Hall, London

    Google Scholar 

  • Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of ω-3 very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  CAS  PubMed  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40(3):211–225

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Innis SM (2003) Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr 143(4 Suppl):S1–S8

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MS (1996) Essential fatty acid requirements of cultured marine fish larvae. Aquaculture Nutr 2:183–191

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151:1657–1664

    Article  CAS  Google Scholar 

  • Jensen IJ, Maehre HK, Tommeras ESKE, Olsen RL, Elvevoll EO (2012) Farmed Atlantic salmon (Salmo salar L.) is a good source of long chain omega-3 fatty acids. Br Nutr Found Nutr Bullet 37:25–29

    Article  Google Scholar 

  • Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427:504

    Article  CAS  PubMed  Google Scholar 

  • Kang JX, Weylandt KH (2008) Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell Biochem 49:133–143

    Article  PubMed  Google Scholar 

  • Kaya Y, Turan H (2010) Comparison of protein, lipid and fatty acids composition of anchovy (Engraulis encrasicolus L. 1758) during the commercial catching seasons. J Muscle Foods 21:474–483

    Article  CAS  Google Scholar 

  • Khoddami A, Ariffin AA, Bakar J, Ghazal HM (2009) Fatty acid profile of the oil extracted from fish waste (head, intestine and liver) (Sardinella lemuru). World Appl Sci J 7(1):127–131

    CAS  Google Scholar 

  • Kinney AJ (2006) Metabolic engineering in plants for human health and nutrition. Curr Opin Biotechnol 17:130–138

    Article  CAS  PubMed  Google Scholar 

  • Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528. https://doi.org/10.1016/j.tibtech.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Koep KSC, Hoffman LC, Dicks LMT, Slinde E (2007) Chemical composition of meat and blubber of the cape fur seal (Arctocephalus pusillus pusillus). Food Chem 100:1560–1565

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) AHA scientific statement—fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. For the Nutrition Committee. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2003) Fish consumption, fish oil, Omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:e20–e30

    CAS  PubMed  Google Scholar 

  • Kromhout D, Bosschieter EB, de Lezenne CC (1985) The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 312:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Lavie CJ, Milani RV, Mehra MR, Ventura HO (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am College Cardiol 54(7):585–594

    Article  CAS  Google Scholar 

  • Lee JH, O’Keefe JH, Lavie CJ, Marchioli R, Harris WS (2008) Omega-3 fatty acids for cardioprotection. Mayo Clin Proc 83:324–332

    Article  CAS  PubMed  Google Scholar 

  • Lemaux PG (2008) Genetically Engineered Plants and Foods: A Scientist’s Analysis of the Issues (Part I). Annual Review of Plant Biology 59 (1):771–812

    Article  CAS  PubMed  Google Scholar 

  • Lemke SL, Vicini JL, Su H, Goldstein DA, Nemth MA, Krul ES, Harris WS (2010) Dietary intake of stearidonic acid-enhanced soybean oil increases the omega-3 index: randomised double-blind clinical study of efficacy and safety. Am J Clin Nutr 92:9

    Article  CAS  Google Scholar 

  • Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301–1315. https://doi.org/10.3390/nu5041301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhang R (2000) Fatty acids and b-carotene in Australian purslane (Portulaca oleracea) varieties. J Chromatogr A 893:207–213

    Article  CAS  PubMed  Google Scholar 

  • Lozach N (1986) Extension of rules A-1.1 and A-2.5 concerning numerical terms used in organic chemical nomenclature. Pure Appl Chem 58:1693–1696

    Article  CAS  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium -mediated transformation. Plant Cell Rep 27:273–278

    Article  CAS  PubMed  Google Scholar 

  • Massaro M, Scoditti E, Carluccio MA, De Caterina R (2008) Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostaglandins Leukot Essent Fatty Acids 79:109–115

    Article  CAS  PubMed  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  • Mclean CH, Bulling KR (2005) Difference in lipid profile of New Zealand marine species over four seasons. J Food Lipids 12:313–326

    Article  CAS  Google Scholar 

  • Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng 56(2–3):181–188

    Article  Google Scholar 

  • Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb 12:911–919

    Article  CAS  PubMed  Google Scholar 

  • Mente A, de Koning L, Shannon HS, Anand SS (2009) A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 169(7):659–669

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D (2012) Omega-6 fatty acids and cardiovascular disease. Nutra foods 11:81–84

    CAS  Google Scholar 

  • Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58:2047–2206

    Article  CAS  PubMed  Google Scholar 

  • Mullet J (1990) Designing crops for resistance to environmental stress. AgBiotech News and Information 2, 435–436

    Google Scholar 

  • Murphy KJ, Mann NJ, Sinclair AJ (2003) Fatty acid and sterol composition of frozen and freeze-dried New Zealand green lipped mussel (Perna canaliculus) from three sites in New Zealand, Asia Pacific. J Clin Nutr 2(1):50–60

    Google Scholar 

  • Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376

    Article  CAS  PubMed  Google Scholar 

  • Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  CAS  PubMed  Google Scholar 

  • Nelson GJ, Ackman RG (1998) Absorption and transport of fat in mammals with emphasis on n-3 polyunsaturated fatty acids. Lipids 23:1005–1014

    Article  Google Scholar 

  • Nugent AP (2004) The metabolic syndrome. Nutr Bull 29:36–43

    Article  Google Scholar 

  • Oh K, Hu FB, Manson JE (2005) Dietary fat intake and risk of coronary heart disease in women: 20 years of follow up of the nurses’ health study. Am J Epidemiol 161:672–679

    Article  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry J, Yu L (2004) Fatty acid content and antioxidant properties of cold-pressed black raspberry seed oil and meal. J Food Sci 69(3):189–193

    Google Scholar 

  • Pauly D, Watson R, Adler J (2005) Global trends in world fisheries: impacts on marine ecosystems and food security. Philos Trans R Soc Lond B Biol Sci 360:5–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N Jr (2001) Physiological compartmental analysis of a-linolenic acid metabolism in adult humans. J Lipid Res 42:1257–1265

    CAS  PubMed  Google Scholar 

  • Petersen SFP, Petersen IBF, Sargent JR, Haug T (1986) Lipid class and fatty acid composition of eggs from the Atlantic halibut (Hippoglossus hippog; ossus). Aquaculture 52:207–211

    Article  Google Scholar 

  • Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD, Singh SP (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS One 9:e85061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA D6-desaturase with omega3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Zhou XR, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One 7(11):49165

    Article  CAS  Google Scholar 

  • Petrie JR, Singh SP (2011) Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AoB Plants 2011:plr011

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudyal H, Panchal SK, Diwan V, Brown L (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50:372–387

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotech 22:739–745

    Article  CAS  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 3:236–244

    Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Usher S, Napier JA, Sayanova O (2015) An alternative pathway for the effective production of the omega −3 long-chain polyunsaturated EPA and ETA in transgenic oilseeds. Plant Biotechnol J 13(9):1264–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito H, Ishihara K, Murase T (1997) The fatty acid composition in tuna (Bonito, Euthynnus pelamis) caught at three deferent localities from tropics to temperate. J Sci food Agric 73:53 È5

    Article  CAS  Google Scholar 

  • Sakaguchi K, Morita I, Murota S (1994) Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot Essent Fatty Acids 50:81–84

    Article  CAS  PubMed  Google Scholar 

  • Saravanan P, Davidson NC, Schmidt EB, Calder PC (2010) Cardio-vascular effects of marine omega-3 fatty acids. Lancet 376:540–550

    Article  CAS  PubMed  Google Scholar 

  • Sassa T, Kihara A (2014) Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol Ther (Seoul) 22:83–92

    Article  CAS  Google Scholar 

  • Schmidt EB, Dyerberg J (1994) Omega-3 fatty acids: current status in cardiovascular medicine. Drugs 47:405–424

    Article  CAS  PubMed  Google Scholar 

  • Schweigert FJ (2007) Nutritional proteomics: methods and concepts for research in nutritional science. Ann Nutr Metab 51:99–107

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Wanasundara UN (1998) Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol 9:230–240

    Article  CAS  Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    Article  CAS  PubMed  Google Scholar 

  • Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93:402–412

    Article  CAS  PubMed  Google Scholar 

  • Smith ADM, Brown CJ, Bulman CM (2011) Impacts of fishing low-trophic level species on marine ecosystems. Science 333:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Stymne S, Tonnet LM, Green AL (1992) Biosynthesis of linolenate in developing embryos and cell-free preparations of high-linolenate linseed (Linum usitatissimum) and low-linolenate mutants. Arch Biochem Biophys 294:557–563

    Article  CAS  PubMed  Google Scholar 

  • Takahata K, Monobe K, Tada M, Weber PC (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci Biotechnol Biochem 62:2079–2085

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Zeng F, MacKay K, Roslinsky V, Cheng B (2014) Detection and molecular characterization of two FAD3 genes controlling linolenic acid content and development of allele-specific markers in yellow mustard (Sinapis alba). PLoS One 9:e97430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tocher D (2009) Issues surrounding fish as a source of x-3 long chain poly-unsaturated fatty acids. Lipid Technol 2:13–16

    Article  CAS  Google Scholar 

  • Toro-Vazquez JF, Charó-Alonso MA, Pérez-Briceño F (1999) Fatty acid composition and its relationship with physicochemical properties of pecan (Carya illinoensis) oil. Jacos 76(8):957–965

    CAS  Google Scholar 

  • Ulbricht C, Basch E, Weissner W, Hackman D (2006) An evidence-based systematic review of herb and supplement interactions by the natural standard research collaboration. Informa healthcare. Expert Opin Drug Saf 5(5):719–772. https://doi.org/10.1517/14740338.5.5.719

    Article  CAS  PubMed  Google Scholar 

  • Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274

    Article  CAS  PubMed  Google Scholar 

  • Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. JAOCS 75(3):393

    Article  CAS  Google Scholar 

  • Veierod MB, Laake P, Thelle DS (1997) Dietary fat intake and risk of lung cancer: a prospective study of 51,452 Norwegian men and women. Eur J Cancer Prev 6:540–549

    Article  CAS  PubMed  Google Scholar 

  • Venegas-Calerón M, Sayanova O, Napier JA (2010) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  PubMed  CAS  Google Scholar 

  • Wada M, DeLong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C (2007) Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus Eicosapentaenoic acid-derived substrates and products. J Biol Chem 282:22254–22266

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Welch A, Shakya-Shrestha S, Lentjes MAH, Wareham NJ, Khaw K (2010) Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish eating meat-eaters, vegetarians, and vegans and the precursor-product ratio of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results of from the EPIC-Norfolk cohort. Am J Clin Nutr 92:12

    Article  CAS  Google Scholar 

  • Williams CM, Burdge G (2006) Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc 65:42–50

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Baue J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125:715–729

    Article  CAS  PubMed  Google Scholar 

  • Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31(Suppl):S297–S300

    Article  CAS  PubMed  Google Scholar 

  • Yokoo EM, Valente JG, Grattan L, Schmidy SL, Platt I, Silbergeld EK (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama M, Origasa H, Matsuzaki M (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis [published correction appears in lancet 2007, 370:220]. Lancet 369:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Nita Lakra is thankful to University Grant Commission for providing D S Kothari Fellowship. Saquib Mahmood gratefully acknowledge Department of Biotechnology for providing JRF/SRF as financial support and Jawaharlal Nehru University, New Delhi is also acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakra, N., Mahmood, S., Marwal, A., Sudheep, N.M., Anwar, K. (2019). Bioengineered Plants Can Be an Alternative Source of Omega-3 Fatty Acids for Human Health. In: Ozturk, M., Hakeem, K. (eds) Plant and Human Health, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-03344-6_16

Download citation

Publish with us

Policies and ethics