Skip to main content

Nutritional and Bioactive Profiles of Sprouted Seeds of Mangrove Wild Legume Canavalia cathartica

  • Chapter
  • First Online:
  • 1272 Accesses

Abstract

This study evaluated the nutritional and bioactive potential of germinated seeds of mangrove landrace of Canavalia cathartica of the Southwest India. Germinated seeds possess high protein, high carbohydrates, low lipid, low fibre and high calorific value. Copper, zinc and manganese meet NRC-NAS stipulated standards, while Na-K and Ca-P ratios are favourable to combat blood pressure and calcium retention, respectively. Except for the glutamic acid and tryptophan, amino acids significantly increased in cooked seeds. Most of the essential amino acids (except for tryptophan) are comparable or higher than soybean or rice or FAO-WHO standard for adults. Among the protein fractions, albumins are highest with increased albumin-globulin ratio predicts drastic decrease in antinutritional factors. Increased in vitro protein digestibility, essential amino acid score, protein digestibility corrected to amino acid score and protein efficiency ratios indicate that the cooked germinated seeds are nutritionally superior. Significant decrease in total phenolics, tannins, canavanine in cooked seeds without trypsin inhibition and lowered hemagglutinin activities further confirm suitability of cooked germinated seeds for human nutrition. The nutritional qualities of germinated seeds are comparable to traditionally consumed ripened split beans of three coastal landraces of Canavalia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Tarboush HM (1998) Irradiation inactivation of some antinutritional factors in plant seeds. J Agric Food Chem 46:2698–2708

    Article  CAS  Google Scholar 

  • Akeson WR, Stahmann MA (1964) A pepsin pancreatin digest index of protein quality. J Nutr 83:257–261

    Article  CAS  PubMed  Google Scholar 

  • Akpapunam MA, Sefa-Dedeh S (1997) Some physicochemical properties and anti-nutritional factors of raw, cooked and germinated jack bean (Canavalia ensiformis). Food Chem 59:121–125

    Article  CAS  Google Scholar 

  • Alonso R, Aguirre A, Marzo F (2000) Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem 68:159–165

    Article  CAS  Google Scholar 

  • Alsmeyer RH, Cunningham AE, Happich ML (1974) Equations predict PER from amino acid analysis. Food Technol 28:34–38

    CAS  Google Scholar 

  • Anderson JW, Johnstone BM, Cook-Newell ME (1995) Meta-analysis of the effects of soy protein intake on serum lipids. New Eng J Med 333:276–282

    Article  CAS  PubMed  Google Scholar 

  • Anita DD, Sridhar KR, Kumar SN (2014) Total lipids and fatty acid methyl esters of germinated seeds of mangrove wild legume. Curr Nutr Food Sci 10:187–195

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Arinathan V, Mohan VR, De Britto AJ (2003) Chemical composition of certain tribal pulses in South India. Int J Food Sci Nutr 54:209–217

    Article  CAS  PubMed  Google Scholar 

  • Arun AB, Sridhar KR, Raviraja NS, Schmidt E, Jung K (2003) Nutritional and antinutritional components of Canavalia spp. seeds from the west coast sand dunes of India. Pl Foods Hum Nutr 58:1–13

    Article  Google Scholar 

  • Balogun AM, Fetuga BL (1986) Chemical composition of some underexploited leguminous crop seeds in Nigeria. J Agric Food Chem 34:189–192

    Article  CAS  Google Scholar 

  • Bau HM, Vallaume C, Lin CF, Evard J, Quemener B, Nicolas JP, Mejean L (1994) Effect of solid state fermentation using Rhizopus oligosporus sp. T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rape seed meal. J Sci Food Agric 65:315–322

    Article  CAS  Google Scholar 

  • Baudoin JP, Maquet A (1999) Improvement of protein and amino acid content in seeds of food legumes – a case study in Phaseolus. Biotech Agron Soc Environ 3:220–224

    CAS  Google Scholar 

  • Bell EA (1960) Canavanine in the Leguminosae. Biochem J 75:618–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagya B, Sridhar KR (2007) Composition and nutritive value of tender pods of mangrove wild legume Canavalia cathartica of southwest coast of India. Trop Subtrop Agroecosys 7:177–191

    Google Scholar 

  • Bhagya B, Sridhar KR, Seena S, Young C-C, Arun AB, Nagaraja KV (2006) Nutritional qualities and in vitro starch digestibility of ripened Canavalia cathartica beans of coastal sand dunes of southern India. Elec J Environ Agric Food Chem 5:1241–1252

    CAS  Google Scholar 

  • Bhat R, Karim AA (2009) Exploring the nutritional potential of wild and underutilized legumes. Compre Rev Food Sci Food Saf 8:305–331

    Article  CAS  Google Scholar 

  • Bhat R, Sridhar KR (2008) Effect of electron beam irradiation on the quality characteristics of an underutilized economically valued tropical legume Mucuna pruriens L. DC. Electr J Environ Agric Food Chem 7:2565–2581

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brand WA, Tegtmeyer AR, Hilkert A (1994) Compound-specific isotope analysis, extending towards 15N/14N and 13C/12C. Org Geochem 21:585–594

    Article  CAS  Google Scholar 

  • Bressani R, Brenes RS, Garcia A, Elias LG (1987) Chemical composition, amino acid content and protein quality of Canavalia spp. seeds. J Sci Food Agric 40:17–23

    Article  CAS  Google Scholar 

  • Burns R (1971) Methods for estimation of tannins in grain sorghum. Agron J 63:511–512

    Article  CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. Crit Rev Food Sci Nutr 13:297–335

    Article  CAS  PubMed  Google Scholar 

  • Cho BHS (1989) Soybean oil: its nutritional value and physical role related to polyunsaturated fatty acid metabolism. American Soybean Association Technical Bulletin, Creve Couer #4HN6

    Google Scholar 

  • D’Cunha M (2009) Ecological and biochemical studies on Sand Dune Canavalia of West Coast of India. Ph.D. thesis in Biosciences, Mangalore University, Mangalore, India

    Google Scholar 

  • D’Cunha M, Sridhar KR (2010) L-canavanine and L-arginine in two wild legumes of the genus Canavalia. Inst Integr Omics Appl Biotechnol J 1:29–33

    Google Scholar 

  • D’Cunha M, Sridhar KR, Young C-C, Arun AB (2009) Nutritional evaluation of germinated seeds of coastal sand dune wild legume Canavalia cathartica. Int Food Res J 16:249–260

    Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK (1984) Dry beans of Phaseolus: a review, part 3. Process CRC Crit Rev Food Sci Nutr 21:137–195

    Article  CAS  Google Scholar 

  • Ekanayake S, Jansz ER, Nair BM (1999) Proximate composition, mineral and amino acid content of mature Canavalia gladiata seeds. Food Chem 66:115–119

    Article  Google Scholar 

  • Ekanayake S, Skog K, Asp NG (2007) Canavanine content in sword beans (Canavalia gladiata): analysis and effect of processing. Food Chem Toxicol 45:797–803

    Article  CAS  PubMed  Google Scholar 

  • Enneking D, Wink M (2000) Towards the elimination of anti-nutritional factors in grain legumes. In: Knight R (ed) Current plant science and biotechnology in agriculture, vol 34. Kluwer Academic Publishers, Dordrecht, pp 375–384

    Google Scholar 

  • Ezeagu IE, Metges CC, Proll J, Petzke KJ, Akinsoyinu AO (1996) Chemical composition and nutritive value of some wild-gathered tropical plant seeds. Food Nutr Bull 17:275–278

    Article  Google Scholar 

  • FAO (2000) Food insecurity: when people live with hunger and fear starvation. FAO, Rome

    Google Scholar 

  • FAO-WHO (1991) Protein quality evaluation: reports of a joint FAO-WHO expert consultation, food and nutrition paper # 51. Food and agriculture Organization of the United Nations. FAO, Rome

    Google Scholar 

  • FAO-WHO (1998) Preparation and use of food-based dietary guidelines. Report of joint FAO-WHO consultation. Technical report series # 880. FAO, Geneva

    Google Scholar 

  • Friedman M (1996) Nutritional value of proteins from different food sources – a review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  • Gahukar RT (2009) Food security: the challenges of climate change and bioenergy. Curr Sci 96:26–28

    Google Scholar 

  • Ghavidel RA, Prakash J (2007) The impact of germination and dehulling on nutrients, antinutrients, in-vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT – Food Sci Technol 40:1292–1299

    Article  CAS  Google Scholar 

  • Gheyasuddin S, Cater CM, Mattil KF (1970) Preparation of a colourless sunflower protein isolate. Food Technol 24:242–243

    Google Scholar 

  • Giami SY, Akusu MO, Emelike JN (2001) Valuation of selected food attributes of four advances lines of ungerminated and germinated Nigerian cowpea (Vigna unguiculata (L.) Walp.). Pl Food Hum Nutr 56:61–73

    Article  CAS  Google Scholar 

  • Gupta CN, Wagle DS (1978) Proximate composition and nutritive value of Phaseolus mungoreus. A cross between Phaseolus mungo and Phaseolus aureus. J Food Sci Technol 15:34–35

    CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartfield PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  PubMed  Google Scholar 

  • Hertog MGL, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D (1997) Antioxidant flavonols and ischaemic heart disease in a Welsh population of men – the Caerphilly study. Am J Clin Nutr 65:1489–1494

    Article  CAS  PubMed  Google Scholar 

  • Hofmann D, Gehre M, Jung K (2003) Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isotopes Environ Health Stud 39:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hofmann D, Jung K, Bender J, Gehre M, Schüürmann G (1997) Using natural isotope variations of nitrogen in plants as an early indicator of air pollution stress. J Mass Spectrom 32:855–863

    Article  CAS  Google Scholar 

  • Humphries EC (1956) Mineral composition and ash analysis. In: Peach K, Tracey MV (eds) Modern methods of plant analysis, vol 1. Springer, Berlin, pp 468–502

    Google Scholar 

  • Jambunathan R, Singh U (1980) Studies on Desi and Kabuli chickpea (Cicer arietinum) cultivars. 1. Chemical composition. In: Proceedings of the International Workshop on Chickpea Improvement. ICRISAT, Andhra Pradesh, India, pp 61–66

    Google Scholar 

  • Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products, a collaborative analysis of an improved procedure. Cereal Chem 51:376–382

    CAS  Google Scholar 

  • Khan AM, Jacobson I, Eggum OB (1979) Nutritive value of some improved varieties of legumes. J Sci Food Agric 30:390–400

    Google Scholar 

  • Livsmedelsverk S (1988) Energi Och Näringsämnen. The Swedish Food Administration, Stockholm

    Google Scholar 

  • Mubarak AE (2005) Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89:489–495

    Article  CAS  Google Scholar 

  • Müller HG, Tobin G (1980) Nutrition and good processing. Croom Helm Ltd., London

    Google Scholar 

  • Muzquiz M, Pedrosa MM, Cuadrado C, Ayet G, Burbano C, Brenes A (1998) Variation of alkaloids, alkaloid esters, phytic acid and phytase activity in germinated seeds of Lupinus albus and L. luteus. In: Jansman AJM, Hill GD, Huisman J, van der Poel AFB (eds) Recent advances of research in antinutritional factors in legume seeds and rapeseed, EAAP publication # 93. Wageningen Press, Wageningen, pp 387–−390

    Google Scholar 

  • Nakatsu S, Matsuda M, Sakagami T, Takahashi T, Yamatato S (1996) Decomposition of canavanine in process of germination in the seeds of Canavalia gladiata. Seikagaku 38:67–71

    Google Scholar 

  • Nareshkumar S (2007) Capillary gas chromatography method for fatty acid analysis of coconut oil. J Plant Crops 35:23–27

    Google Scholar 

  • NRC-NAS (1989) Recommended dietary allowances. National Academy Press, Washington, DC

    Google Scholar 

  • Nwokolo E (1987) Nutritional evaluation of pigeon pea meal. Pl Foods Hum Nutr 37:283–290

    Article  CAS  Google Scholar 

  • Nwokolo E, Oji DIM (1985) Variation in metabolizable energy content of raw or autoclaved white and brown varieties of three tropical grain legumes. Anim Food Sci Technol 13:141–146

    Article  Google Scholar 

  • Occenã IV, Majica E-RE, Merca FE (2007) Isolation of partial characterization of a lectin from the seeds of Artocarpus camansi Blanco. Asian J Plant Sci 6:757–764

    Article  Google Scholar 

  • Osman MA (2007) Changes in nutrient composition, trypsin inhibitor, phytates, tannins and protein digestibility of Dolichos Lablab seeds [Lablab Purpureus (L) sweet] occurring during germination. J Food Technol 5:294–299

    CAS  Google Scholar 

  • Padua-Resurreccion AB, Banzon JA (1979) Fatty acid composition of the oil from progressively maturing bunches of coconut. Philip J Coconut Stud 4:1–15

    CAS  Google Scholar 

  • Petzke KJ, Ezeagu IE, Proll J, Akinsoyinu AO, Metges CC (1997) Amino acid composition, available lysine content and in vitro protein digestibility of selected tropical crop seeds. Plant Foods Hum Nutr 50:151–162

    Article  CAS  PubMed  Google Scholar 

  • Poel AFBV, Gravandecl S, Boer H (1991) Effect of different processing methods on the tannin content and protein digestibility of faba bean. J Anim Feed Sci Technol 33:49–58

    Article  Google Scholar 

  • Pugalenthi M, Vadivel V, Gurumoorthi P, Janardhanan K (2004) Comparative nutritional evaluation of little known legumes, Tamarindus indica, Erythrina indica and Sesbania bispinosa. Trop Subtrop Agroecosys 4:107–123

    Google Scholar 

  • Rajaram N, Janardhanan K (1992) Nutritional and chemical evaluation of raw seeds of Canavalia gladiata (Jacq) DC. and C. ensiformis DC, the underutilized food and fodder crops in India. Plants Foods Hum Nutr 42:329–336

    Article  CAS  Google Scholar 

  • Rao BSN, Deosthale YG, Pant KC (1999) Nutritive value of Indian Foods. Indian Council of Medical Research, National Institute of Nutrition, India

    Google Scholar 

  • Rao TA, Sherieff AN (2002) Coastal ecosystem of the Karnataka State, India II – Beaches. Karnataka Association for the Advancement of Science, Bangalore, India

    Google Scholar 

  • Rao TA, Suresh PV (2001) Coastal ecosystems of the Karnataka State, India – 1. Mangroves. Karnataka Association for the Advancement of Science, Bangalore, India

    Google Scholar 

  • Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1985) Dry bean tannins, a review of nutritional implications. J Am Oil Chem Soc 62:541–549

    Article  CAS  Google Scholar 

  • Riddoch CH, Mills CF, Duthie GG (1998) An evaluation of germinating beans as a source of vitamin C in refugee foods. Eur J Clin Nutr 52:115–118

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA (1970) Investigation of canavanine biochemistry in the jack bean, Canavalia ensiformis (L.) DC. 1. Canavanine utilization in the developing plant. Plant Physiol 46:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosset J, Bärlocher F, Oertli JJ (1982) Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Int Rev Ges Hydrobiol 67:695–711

    CAS  Google Scholar 

  • Sadasivam S, Manickam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Ltd., New Delhi

    Google Scholar 

  • Salvin J, Jacobs DR, Marquart L (1997) Whole grain consumption and chronic disease: protective mechanisms. Nutr Canc 27:14–21

    Article  Google Scholar 

  • Sangronis E, Machado CJ (2007) Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT J Sci Technol 40:116–120

    Article  CAS  Google Scholar 

  • Schelze H, Savelkoul FH, Verstegen MW, van der Poel AF, Tamminga S, Groot NS (1997) Nutritional evaluation of biologically treated white kindly beans (Phaseolus vulgaris L.) in pigs: Ileal and amino acid digestibility. J Anim Sci 75:3187–3194

    Article  Google Scholar 

  • Seena S, Sridhar KR (2006) Nutritional and microbiological features of little known legumes, Canavalia cathartica Thouars and C. maritima Thouars of the southwest coast of India. Curr Sci 90:1638–1650

    CAS  Google Scholar 

  • Seena S, Sridhar KR, Arun AB (2007) Canavalia cathartica of southwest coast of India – a neglected wild legume. Plants Gen Res Newslett 150:16–20

    Google Scholar 

  • Seena S, Sridhar KR, Arun AB, Young C-C (2006) Effect of roasting and pressure-cooking on nutritional and protein quality of seeds of mangrove legume Canavalia cathartica from southwest coast of India. J Food Comp Anal 19:284–293

    Article  CAS  Google Scholar 

  • Seena S, Sridhar KR, Bhagya B (2005) Biochemical and biological evaluation of an unconventional legume, Canavalia maritima of coastal sand dunes of India. Trop Subtrop Agroecosys 5:1–14

    Google Scholar 

  • Shills MEG, Young VR (1988) Modern nutrition in health and disease. In: Neiman DC, Buthepodorth DE, Nieman CN, Nutrition, WmC Brown Publishers, Dubugue, 276–282

    Google Scholar 

  • Shimelis EA, Rakshit SK (2007) Effect of processing on antinutritional and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) verities grown in East Africa. Food Chem 103:161–172

    Article  CAS  Google Scholar 

  • Shreelalitha J, Supriya P, Sridhar KR (2018) Bioactive profile of edible ripened split beans of three wild landraces of coastal Canavalia. In: Öztürk M, Hakeem KR (eds) Medicinal and aromatic plant species in human health, Phytochemistry, vol 3. Springer International, New York

    Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  • Sridhar KR, Shreelalitha SJ, Supriya P, Arun AB (2016) Nutraceutical attributes of ripened split beans of three Canavalia landraces. J Agric Technol 12:1277–1297

    Google Scholar 

  • StatSoft Inc. (2008) Statistica, Version # 8. StatSoft, Tulsa, OK

    Google Scholar 

  • Swaffar DS, Ang CY, Desai PB, Rosenthal GA (1994) Inhibition of the growth of human pancreatic cancer cells by the arginine antimetabolite L-canavanine. Cancer Res 54:6045–6048

    CAS  PubMed  Google Scholar 

  • Trugo LC, Donangelo CM, Trugo NMF, Knudsen KEB (2000) Effect of heat treatment on nutritional quality of germinated legume seeds. J Agric Food Chem 48:2082–2086

    Article  CAS  PubMed  Google Scholar 

  • Urbano G, Lopez-Jurdo M, Hernandez J, Fernandez M, Moreu MC, Frias J, Dias-Pollan C, Prodanov M, Vidal-Valverde C (1995) Nutritional assessment of raw, heated and germinated lentils. J Agric Food Chem 43:1871–1877

    Article  CAS  Google Scholar 

  • Vadivel V, Janardhanan K (2001) Nutritional and anti-nutritional attributers of the under-utilized legume, Cassia floribunda Cav. Food Chem 73:209–215

    Article  CAS  Google Scholar 

  • Vadivel V, Pugalenthi M (2007) Biological value and protein quality of raw and processed seeds of Mucuna pruriens var. utilis. Livestock Res Rural Dev 19:7 http://www.cipav.org.co/lrrd/lrrd19/7/vadi19097.htm

    Google Scholar 

  • Vadivel V, Pugalenthi M, Megha S (2008) Biological evaluation of protein quality of raw and processed seeds of gila bean (Entada scandens Benth). Trop Subtrop Agroecosys 8:125–133

    Google Scholar 

  • Vanderstoep J (1981) Effect of germination on the nutritive value of legumes. Food Technol 35:83–85

    CAS  Google Scholar 

  • Venn BJ, Mann JI (2004) Cereal grains, legumes and diabetes. Eur J Clin Nutr 58:1443–1461

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan MB, Thangadurai D, Ramesh N (2001) Biochemical evaluation of Neonotonia wightii (Wight and Arn) Lackey (Fabaceae). Food Chem 75:275–279

    Article  CAS  Google Scholar 

  • Wahnon R, Mokady S, Cogan U (1988) Proceedings of 19th World Congress. International Society for Fat Research, Tokyo

    Google Scholar 

  • Yusuf AA, Mofio BM, Ahmed AB (2007) Proximate and mineral composition of Tamarindus indica Linn 1753 seeds. Sci World J 2:1–4

    Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Mangalore University for permission to carry out this study in the Department of Biosciences. The first author (DDA) acknowledges the University Grants Commission, New Delhi, India and Mangalore University for the award of Junior Research Fellowship under the scheme Research Fellowship in Sciences for Meritorious Students. The corresponding author (KRS) acknowledges the award University Grants Commission-Basic Science Research Faculty Fellowship by the University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anita, D.D., Sridhar, K.R. (2019). Nutritional and Bioactive Profiles of Sprouted Seeds of Mangrove Wild Legume Canavalia cathartica. In: Ozturk, M., Hakeem, K. (eds) Plant and Human Health, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-03344-6_11

Download citation

Publish with us

Policies and ethics