Hybrid Electric Vehicle Powertrain Design: Construction of Topologies and Initial Design Schemes

  • Xingyu Zhou
  • Datong QinEmail author
  • Dario Rotella
  • Marco Cammalleri
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 68)


This paper introduces the generic representation and construction methods for the architectures of the four-wheel-drive hybrid electric vehicle (HEV) powertrain, which achieve the unified rules to represent and construct all types of HEV powertrains. To map the architecture into numerical variables and add it into optimization, the kinematic matrix of the HEV powertrain is extracted corresponding to the topological structure. Based on the torque distribution requirement of four-wheel-drive HEV, the initial design schemes (architecture and parameters) are created by charge-under-go feasibility inspection.


HEV powertrain Topology Optimization Fuel economy 


  1. 1.
    Zhou, X., Qin, D., Hu, J., et al.: Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains. Appl. Energy 208, 1608–1625 (2017)CrossRefGoogle Scholar
  2. 2.
    Ngo, H.T., Yan, H.S.: Configuration synthesis of parallel hybrid transmissions. Mech. Mach. Theory 97, 51–71 (2016)CrossRefGoogle Scholar
  3. 3.
    Silvas, E., Hofman, T., Serebrenik, A., et al.: Functional and cost-based automatic generator for hybrid vehicles topologies. IEEE/ASME Trans. Mechatron. 20(4), 1561–1572 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Li, S.E., Peng, H., et al.: Efficient exhaustive search of power-split hybrid powertrains with multiple planetary gears and clutches. ASME J. Dyn. Syst. Measur. Control 137(12), 121006 (2015)CrossRefGoogle Scholar
  5. 5.
    Kim, H., Kum, D.: Comprehensive design methodology of input- and output-split hybrid electric vehicles. In search of optimal configuration. IEEE/ASME Trans. Mechatron. 21(6), 2912–2923 (2016)CrossRefGoogle Scholar
  6. 6.
    Pei, H., Hu, X., Yang, Y., et al.: Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear. Appl. Energy 214, 103–116 (2018)CrossRefGoogle Scholar
  7. 7.
    Bayrak, A.E., Kang, N., Papalambros, P.Y.: Decomposition-based design optimization of hybrid electric powertrain architectures: simultaneous configuration and sizing design. J. Mech. Des. 138(7), 071405 (2015)CrossRefGoogle Scholar
  8. 8.
    Cammalleri, M., Rotella, D.: Functional design of power-split CVTs: an uncoupled hierarchical optimized model. Mech. Mach. Theory 116, 294–309 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xingyu Zhou
    • 1
  • Datong Qin
    • 1
    Email author
  • Dario Rotella
    • 2
  • Marco Cammalleri
    • 2
  1. 1.The State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqingChina
  2. 2.Dipartimento dell’Innovazione Industriale e DigitaleUniversità di PalermoPalermoItaly

Personalised recommendations