Design and Testing of a Finger Exoskeleton Prototype

  • Eike-Cristian GerdingEmail author
  • Giuseppe Carbone
  • Daniele Cafolla
  • Matteo Russo
  • Marco Ceccarelli
  • Sven Rink
  • Burkhard Corves
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 68)


In this paper, a novel exoskeleton linkage is proposed for finger motion assistance in rehabilitation therapies because of reproducing finger motions. The exoskeleton linkage is composed of two chains in series giving a 2-degree-of-freedom full mechanism that is easily wearable. Design requirements are discussed to formulate a synthesis procedure whose design result gives a mechanical design for a prototype. The operation is simulated with results that are compared to experimental data with the built prototype to validate and characterize the proposed design.


Mechanism design Exoskeleton Finger motion Prototype test 



The first author gratefully acknowledges the Erasmus+ program for the period of study he spent in 2017–2018 at LARM of the University of Cassino and South Latium under the supervision of Prof. M. Ceccarelli.


  1. 1.
    Tjahyono, A.P., Aw, K.C., Devaraj, H., Surendra, W., Haemmerle, E., Travas-Sejdic, J.: A five-fingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors. Ind. Robot Int. J. 40(3), 251–260 (2013)CrossRefGoogle Scholar
  2. 2.
    Kaplan, W., Wirtz, V., Mantel, A., Béatrice, P.S.U.: Priority medicines for Europe and the world update 2013 report. Methodology 2, 7 (2013)Google Scholar
  3. 3.
    Agarwal, P., Fox, J., Yun, Y., O’Malley, M.K., Deshpande, A.D.: An index finger exoskeleton with series elastic actuation for rehabilitation: design, control and performance characterization. Int. J. Robot. Res. 34(14), 1747–1772 (2015)CrossRefGoogle Scholar
  4. 4.
    Sale, P., Lombardi, V., Franceschini, M.: Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res. Treat. (2012)Google Scholar
  5. 5.
    Bataller, A., Cabrera, J.A., Clavijo, M., Castillo, J.J.: Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech. Mach. Theor. 105, 31–43 (2016)CrossRefGoogle Scholar
  6. 6.
    Tyromotion GmbH: AMADEO. Accessed 29 Jan 2018
  7. 7.
    Ates, S., Haarman, C.J., Stienen, A.H.: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton. Robot. 41(3), 711–723 (2017)CrossRefGoogle Scholar
  8. 8.
    Gerding, E.C., Ceccarelli, M., Carbone, G., Cafolla, D., Russo, M.: Italian Patent Proposal No. 102018000003847 (2018)Google Scholar
  9. 9.
    Levangie, P.K., Norkin, C.C.: Joint Structure and Function: A Comprehensive Analysis. FA Davis, Philadelphia (2005)Google Scholar
  10. 10.
    Cobos, S., Ferre, M., Uran, M.S., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp. 2246–2251. IEEE, September 2008Google Scholar
  11. 11.
    Kerle, H., Corves, B., Hüsing, M.: Getriebetechnik: Grundlagen, Entwicklung und Anwendung ungleichmäßig übersetzender Getriebe. Springer, Wiesbaden (2015)CrossRefGoogle Scholar
  12. 12.
    Tower Pro Pte Ltd: Micro Servo Motor MG90S – Datasheet. Tower Pro Pte Ltd, Taiwan (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eike-Cristian Gerding
    • 1
    Email author
  • Giuseppe Carbone
    • 2
  • Daniele Cafolla
    • 2
  • Matteo Russo
    • 2
  • Marco Ceccarelli
    • 2
  • Sven Rink
    • 1
  • Burkhard Corves
    • 1
  1. 1.Institut für Getriebetechnik, Maschinendynamik und RobotikRWTH Aachen UniversityAachenGermany
  2. 2.LARM: Laboratory of Robotics and MechatronicsUniversity of Cassino and Southern LatiumCassinoItaly

Personalised recommendations