Digital Twin Development of HexaFloat, a 6DoF PKM for HIL Tests

  • Ivan Raineri
  • Francesco La Mura
  • Hermes GibertiEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 68)


This paper deals with the creation of a digital replication of an hexapod robot. To pursue this goal two software are used jointly to catch the dual nature of this mechatronic system. The mechanical aspects of the system are represented by ADAMS\(^{\tiny \textregistered }\), while control logic loops behavior is handled by SIMULINK\(^{\tiny \textregistered }\). In addition, actuators friction characterization is performed. This co-simulation apparatus opens to a number of possibilities such as preliminary tests of feasibility and off-line estimation of kinematic parameters without sensors, while widening the field of applications of the machine itself.


  1. 1.
    Digital Wind Farm: The next evolution of wind energy (2016).
  2. 2.
    Giberti, H., Ferrari, D.: A novel hardware-in-the-loop device for floating offshore wind turbines and sailing boats. Mech. Mach. Theory 85, 82–105 (2015). Scholar
  3. 3.
    Bayati, I., Belloli, M., Bernini, L., Fiore, E., Giberti, H., Zasso, A.: On the functional design of the DTU10 MW wind turbine scale model of LIFES50+ project. J. Phys. Conf. Ser. 753(5), 052018 (2016)CrossRefGoogle Scholar
  4. 4.
    Avventuroso, G., Silvestri, M., Pedrazzoli, P.: A networked production system to implement virtual enterprise and product lifecycle information loops. IFAC-PapersOnLine 50(1), 7964–7969 (2017). Scholar
  5. 5.
    Fitzgerald, J., Larsen, P.G., Verhoef, M.: Collaborative design for embedded systems, pp. 15–25 (2014)Google Scholar
  6. 6.
    Fiore, E., Giberti, H.: Optimization and comparison between two 6-DoF parallel kinematic machines for HIL simulations in wind tunnel. In: Proceedings of the MATECWeb of Conferences, Singapore, vol. 45, 13–14 January 2016Google Scholar
  7. 7.
    Fiore, E., Giberti, H., Ferrari, D.: Dynamics modeling and accuracy evaluation of a 6-DoF Hexaslide robot. In: Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 473–479 (2016).
  8. 8.
    Ferrari, D., Giberti, H.: A genetic algorithm approach to the kinematic synthesis of a 6-DoF parallel manipulator. In: Proceedings of the 2014 IEEE Conference on Control Applications, Juan Les Antibes, France, pp. 222–227, 8–10 October 2014Google Scholar
  9. 9.
    La Mura, F., Todeschini, G., Giberti, H.: High performance motion-planner architecture for hardware-in-the-loop system based on position-based-admittance-control. MDPI Robot. 7, 8 (2018)Google Scholar
  10. 10.
    La Mura, F., Roman, P., Fiore, E., Giberti, H.: Workspace limiting strategy for 6 DOF force controlled PKMs manipulating high inertia objects. MDPI Robot. 7, p. 10 (2018)CrossRefGoogle Scholar
  11. 11.
    Tijiani, I.B., Akmeliawati, R., Salami, M.J.E.: Artificial Intelligent Based Friction Modelling and Compensation in Motion Control System. Intelligent Mechatronics System Research Unit (2011)Google Scholar
  12. 12.
    Lee, W., Lee, C.Y., Jeong, Y.H., Min, B.K.: Distributed component friction model for precision control of a feed drive system. IEEE/ASME Trans. Mechatron. 20, 1966–1974 (2015)CrossRefGoogle Scholar
  13. 13.
    Stribeck, R.: Die Wesentlichen Eigenshaften der Gleit- und Roll- enlager, Z Ver Dtsch Zucker-Ind 45(36) (1902)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ivan Raineri
    • 1
  • Francesco La Mura
    • 2
  • Hermes Giberti
    • 3
    Email author
  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanItaly
  2. 2.Department of Mechanical EngineeringPolitecnico di MilanoMilanItaly
  3. 3.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversita’ degli Studi di PaviaPaviaItaly

Personalised recommendations