Composite and Damping Materials Characterization with an Application to a Car Door

  • Alessandro Fasana
  • Alessandro Ferraris
  • Davide Berti Polato
  • Andrea Giancarlo Airale
  • Massimiliana CarelloEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 68)


This paper presents the characterization of a Carbon Fibre Reinforced Plastic (CFRP) and a couple of damping materials, particularly suited to the manufacturing process of composites. Young’s modulus and loss factor of each material are defined by means of the Oberst beam test method, where a specific curve fitting technique replaces the half-power bandwidth procedure to ameliorate the estimates of the parameters. Effects of both temperature and aging are reported, since operational conditions are various and time duration very important for most components, for sure in the automotive sector. Two sandwich beams, formed by the sequence CFRP/damping material/CFRP, are also tested to experimentally verify the effectiveness of this configuration to provide damping. Finally, two complete car doors have been produced with a CFRP composite, with and without an intermediate damping layer. Their modal parameters have been extracted by an experimental modal analysis and show that the damping material can effectively ameliorate the noise and vibration response of the structure.


Damping materials Automotive Oberst test FEM NVH FRF CFRP 



The authors wish to acknowledge: Gummiwerk KRAIBURG GmbH for the damping material “KRAIBON® SUT9609/24 and HHZ 9574” and the active support during all the activity and G. Angeloni® S.R.L. for the structural CFRP material.


  1. 1.
    Zogg, M., Liu, Y., Ermanni, P.: Interface damping in adhesive bonds of automotive panel structures. ATZ Worldw. 116, 54 (2014). Scholar
  2. 2.
    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262(3), 457–474 (2003). ISSN 0022-460XCrossRefGoogle Scholar
  3. 3.
    Bein, T., Bös, J., Herold, S., Mayer, D., Melz, T., Thomaier, M.: Smart interfaces and semi-active vibration absorber for noise reduction in vehicle structures. Aerosp. Sci. Technol. 12(1), 62–73 (2008). ISSN 1270-9638CrossRefGoogle Scholar
  4. 4.
    Imam, O., Naughton, P., Toccalino, E., et al.: Polymeric solutions for automotive lightweight design in body and interior. ATZ Worldw. 111, 18 (2009). Scholar
  5. 5.
    Muc, A., Zuchara, P.: Sandwich plates-free vibrations and damping analysis. Mech. Compos. Mater. 34, 203 (1998). Scholar
  6. 6.
    Lurie, S., Solyaev, Y., Ustenko, A.: Optimal damping behavior of a composite sandwich beam reinforced with coated fibers. Appl. Compos. Mater. (2018). Scholar
  7. 7.
    American Society for Testing and Materials International. ASTM E756 − 05 (Reapproved 2010). Standard Test Method for Measuring Vibration-Damping Properties of Materials (2010)Google Scholar
  8. 8.
    Fagone, M., Loccarini, F., Ranocchiai, G.: Strength evaluation of jute fabric for the reinforcement of rammed earth structures. Compos. Part B Eng. 113, 1–13 (2017)CrossRefGoogle Scholar
  9. 9.
    Mastali, M., Dalvand, A., Sattarifard, A.: The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. Part B Eng. 112, 74–92 (2017)CrossRefGoogle Scholar
  10. 10.
    Pach, J., Pyka, D., Jamroziak, K., Mayer, P.: The experimental and numerical analysis of the ballistic resistance of polymer composites. Compos. Part B Eng. 113, 24–30 (2017)CrossRefGoogle Scholar
  11. 11.
    SAE International. SAE J1594 JUL2010 Vehicle Aerodynamics Terminology (2010)Google Scholar
  12. 12.
    IEC 60068 - 2 - 1 International Electrotechnical Commission, International standard for Environmental testingGoogle Scholar
  13. 13.
    Tweten, D.J., Ballard, Z., Mann, B.P.: Minimizing error in the logarithmic decrement method through uncertainty propagation. J. Sound Vib. 333(13), 2804–2811 (2014)CrossRefGoogle Scholar
  14. 14.
    Papagiannopoulos, G.A., Hatzigeorgiou, G.D.: On the use of the half-power bandwidth method to estimate damping in building structures. Soil Dyn. Earthq. Eng. 31(7), 1075–1079 (2011)CrossRefGoogle Scholar
  15. 15.
    Fasana, A., Ferraris, A., Airale, A.G., Berti Polato, D., Carello, M.: Oberst and aging tests of damped CFRP materials: Fitting procedure and experimental results. Compos. Part B Eng. 148, 104–113, April 2018. Accessed 27 Apr 2018
  16. 16.
    Govindswamy, K., Wellmann, T., Eisele, G.: Aspects of NVH integration in hybrid vehicles. SAE Int. J. Passeng. Cars Mech. Syst. 2(1), 1396–1405 (2009)CrossRefGoogle Scholar
  17. 17.
    Eisele, G., Wolff, K., Wittler, M., Abtahi, R., Pischinger, S.: NVH of Hybrid Vehicles (2010)Google Scholar
  18. 18.
    Fasana, A., Carello, M., Ferraris, A., Airale, A., Berti Polato, D.: NVH analysis of automotive components: a carbon fiber suspension system case. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science, pp. 345–354. Springer International Publishing, Cham (2017). Accessed 16 Jun 2017Google Scholar
  19. 19.
    Bai, J.M., Sun, C.T.: The effect of viscoelastic adhesive layers on structural damping of Sandwich Beams*. Mech. Struct. Mach. 23(1), 1–16 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Burlayenko, V.N., Sadowski, T.: Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates. Int. J. Non Linear Mech. 45(10), 959–968 (2010)CrossRefGoogle Scholar
  21. 21.
    Al-Zubi, M.A., Ayorinde, E.O., Dundar, M.A., Warriach, M., Murty, Y.: Vibro-acoustic characterization and optimization of periodic cellular material structures (PCMS) for NVH applications. J. Mater. Sci. Res. 2(4), 64, 5 September 2013. Accessed 15 Jun 2017
  22. 22.
    Gur, Y., Wagner, D.: Damping properties and NVH modal analysis results of carbon fiber composite vehicle components. SAE Int. J. Mater. Manuf. 10(2), 198–205, 28 March 2017. Accessed 27 Apr 2018
  23. 23.
    Yang, S., Gibson, R.F., Gu, L., Chen, W.-H.: Modal parameter evaluation of degraded adhesively bonded composite beams. Compos. Struct. 43(1), 79–91 (1998)CrossRefGoogle Scholar
  24. 24.
    Fasana, A., Ferraris, A., Airale, A.G., Berti Polato, D., Carello, M.: Experimental characterization of damped CFRP materials with an application to a lightweight car door. Shock Vib. 2017, 1–9 (2017)CrossRefGoogle Scholar
  25. 25.
    Maia, N.M.M., Montalvão e Silva, J.M. (eds.) Theoretical and Experimental Modal Analysis, 468 p. Mechanical Engineering Research Studies. Taunton, Somerset, England. Research Studies Press , Wiley, New York (1997)Google Scholar
  26. 26.
    Nobili, A., Signorini, C.: On the effect of curing time and environmental exposure on impregnated Carbon Fabric Reinforced Cementitious Matrix (CFRCM) composite with design considerations. Compos. Part B Eng. 112, 300–313 (2017)CrossRefGoogle Scholar
  27. 27.
    Kim, K.-W., Kim, D.-K., Kim, B.-S., An, K.-H., Park, S.-J., Rhee, K.Y., et al.: Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites. Compos. Part B Eng. 112, 15–21 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentPolitecnico di TorinoTurinItaly

Personalised recommendations