Skip to main content

Self-stabilization and Byzantine Tolerance for Maximal Matching

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2018)

Abstract

We analyse the impact of transient and Byzantine faults on the construction of a maximal matching in a general network. We consider the self-stabilizing algorithm called AnonyMatch presented by Cohen et al. [3] for computing such a matching. Since self-stabilization is transient fault tolerant, we prove that this algorithm still works under the more difficult context of arbitrary Byzantine faults. Byzantine nodes can prevent nodes close to them from taking part in the matching for an arbitrarily long time. We give bounds on their impact depending on the distance between a non-Byzantine node and the closest Byzantine, called the containment radius. We present the first algorithm tolerating both transient and Byzantine faults under the fair distributed daemon while keeping the best known containment radius. We prove this algorithm converges in \(O(\max (\varDelta n, \varDelta ^2 \log n))\) rounds w.h.p., where n and \(\varDelta \) are the size and the maximum degree of the network, resp.. Additionally, we improve the best known complexity as well as the best containment radius for this problem under the fair central daemon.

S. Kunne—This work is eligible for best student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A matching M is 1-maximal if it is not possible to build a matching by removing one edge and adding two edges to M.

  2. 2.

    Alternatively, the daemon could specify a set of pairs (enabled node, rule for which that node is enabled). In our algorithm, all guards are mutually exclusive; that is, at any time, a given node can be enabled for one rule at most. Therefore, that distinction does not matter.

  3. 3.

    The names and definitions of the six classes are inspired by similar definitions in [3, 8], but were adapted to form a partition and to depend on the states of node u and its direct neighbours’ internal variables only.

References

  1. Asada, Y., Inoue, M.: An efficient silent self-stabilizing algorithm for 1-maximal matching in anonymous networks. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 187–198. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_17

    Chapter  Google Scholar 

  2. Berenbrink, P., Friedetzky, T., Martin, R.A.: On the stability of dynamic diffusion load balancing. Algorithmica 50(3), 329–350 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cohen, J., Lefèvre, J., Maâmra, K., Pilard, L., Sohier, D.: A self-stabilizing algorithm for maximal matching in anonymous networks. Parallel Process. Lett. 26(4), 1–17 (2016). https://doi.org/10.1142/S012962641650016X

    Article  MathSciNet  MATH  Google Scholar 

  4. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computations. In: 12th International Conference on Parallel and Distributed Systems, ICPADS 2006, Minneapolis, Minnesota, USA, 12–15 July 2006, pp. 39–48 (2006). https://doi.org/10.1109/ICPADS.2006.100

  5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  6. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997). https://doi.org/10.1109/71.588622

    Article  Google Scholar 

  7. Dubois, S., Potop-Butucaru, M., Nesterenko, M., Tixeuil, S.: Self-stabilizing Byzantine asynchronous unison. J. Parallel Distrib. Comput. 72(7), 917–923 (2012). https://doi.org/10.1016/j.jpdc.2012.04.001

    Article  MATH  Google Scholar 

  8. Dubois, S., Tixeuil, S., Zhu, N.: The Byzantine brides problem. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 107–118. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0_13

    Chapter  Google Scholar 

  9. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings. J. Comput. Syst. Sci. 53(3), 357–370 (1996)

    Article  MathSciNet  Google Scholar 

  10. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications and Conference on Real-Time Computing Systems and Applications, PDPTA, vol. 2, pp. 797–803 (2006)

    Google Scholar 

  11. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. 70(4), 406–415 (2010)

    Article  Google Scholar 

  12. Han, Z., Gu, Y., Saad, W.: Matching Theory for Wireless Networks. WN. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56252-0

    Book  Google Scholar 

  13. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

    Article  MathSciNet  Google Scholar 

  14. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)

    Article  MathSciNet  Google Scholar 

  15. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon for arbitrary networks. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_7

    Chapter  Google Scholar 

  16. Karaata, M.H.: Self-stabilizing strong fairness under weak fairness. IEEE Trans. Parallel Distrib. Syst. 12(4), 337–345 (2001). https://doi.org/10.1109/71.920585

    Article  Google Scholar 

  17. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

    Article  Google Scholar 

  18. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theor. Comput. Sci. (TCS) 410(14), 1336–1345 (2009)

    Article  MathSciNet  Google Scholar 

  19. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded Byzantine faults. Int. J. Princ. Appl. Inf. Sci. Technol. (PAIST) 1(1), 1–13 (2007)

    Google Scholar 

  20. Nesterenko, M., Arora, A.: Tolerance to unbounded Byzantine faults. In: Proceedings 21st IEEE Symposium on Reliable Distributed Systems 2002, pp. 22–29. IEEE (2002)

    Google Scholar 

  21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to Byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005). https://doi.org/10.1007/11516798_21

    Chapter  Google Scholar 

  22. Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary network topologies. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 341–350. IEEE (2012)

    Google Scholar 

  23. Turau, V., Hauck, B.: A new analysis of a self-stabilizing maximum weight matching algorithm with approximation ratio 2. Theor. Comput. Sci. (TCS) 412(40), 5527–5540 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanne Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunne, S., Cohen, J., Pilard, L. (2018). Self-stabilization and Byzantine Tolerance for Maximal Matching. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics