Skip to main content

The Concept of Large Consumer

  • Chapter
  • First Online:

Abstract

In the restructured power system, a large consumer can provide its required demand by using multiple options. Pool market, bilateral contracts, and self-generating units are some of the available options for power procurement. The main goal of large consumers from participation in the power market is procuring power at the minimum cost. The power price in the pool market has uncertainty, and to cope with this problem, bilateral contracts with predetermined prices can be considered by a large consumer. To model uncertainty in the pool market, different methods such as stochastic programming, robust optimization approach, and information gap decision method can be used. Renewable energy sources can be used as self-generating units to meet some part of the required demand of the large consumer. Also, energy storage systems can be implemented to store energy during off-peak demand periods and use the stored energy during peak demand periods. Different types of storage systems such as electrical storage systems, thermal storage systems, and cooling storage systems are used to store electricity, heating, and cooling energies, respectively. In this chapter, reviews of considered methods to solve the problem are presented and the obtained results are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.A. Bagal, Y.N. Soltanabad, M. Dadjuo, K. Wakil, N. Ghadimi, Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Sol. Energy 169, 343–352 (2018)

    Article  Google Scholar 

  2. M. Carrion, A.B. Philpott, A.J. Conejo, J.M. Arroyo, A stochastic programming approach to electric energy procurement for large consumers. IEEE Trans. Power Syst. 22(2), 744–754 (2007)

    Article  Google Scholar 

  3. A.J. Conejo, M. Carrion, Risk-constrained electricity procurement for a large consumer. IEE Proc. Gener. Transm. Distrib. 153(4), 407 (2006)

    Article  Google Scholar 

  4. A.J. Conejo, J.J. Fernandez-Gonzalez, N. Alguacil, Energy procurement for large consumers in electricity markets. IEE Proc. Gener. Transm. Distrib. 152(3), 357 (2005)

    Article  Google Scholar 

  5. K. Zare, M.P. Moghaddam, M.K. Sheikh El Eslami, Electricity procurement for large consumers based on information gap decision theory. Energy Policy 38(1), 234–242 (2010)

    Article  Google Scholar 

  6. S. Nojavan, H. Ghesmati, K. Zare, Robust optimal offering strategy of large consumer using IGDT considering demand response programs. Electr. Power Syst. Res. 130, 46–58 (2016)

    Article  Google Scholar 

  7. K. Zare, A.J. Conejo, M. Carrión, M.P. Moghaddam, Multi-market energy procurement for a large consumer using a risk-aversion procedure. Electr. Power Syst. Res. 80(1), 63–70 (2010)

    Article  Google Scholar 

  8. S.J. Kazempour, A.J. Conejo, C. Ruiz, Strategic bidding for a large consumer. IEEE Trans. Power Syst. 30(2), 848–856 (2015)

    Article  Google Scholar 

  9. D. Fang, J. Wu, D. Tang, A double auction model for competitive generators and large consumers considering power transmission cost. Int. J. Electr. Power Energy Syst. 43(1), 880–888 (2012)

    Article  Google Scholar 

  10. R.K. Mallick, R. Agrawal, P.K. Hota, Bidding strategies of Gencos and large consumers in competitive electricity market based on TLBO, in 2016 IEEE 6th International Conference on Power Systems (ICPS), (2016), pp. 1–6

    Google Scholar 

  11. M. Zarif, M.H. Javidi, M.S. Ghazizadeh, Self-scheduling approach for large consumers in competitive electricity markets based on a probabilistic fuzzy system. IET Gener. Transm. Distrib. 6(1), 50 (2012)

    Article  Google Scholar 

  12. M. Zarif, M.H. Javidi, M.S. Ghazizadeh, Self-scheduling of large consumers with second-order stochastic dominance constraints. IEEE Trans. Power Syst. 28(1), 289–299 (2013)

    Article  Google Scholar 

  13. Q. Zhang, A.M. Bremen, I.E. Grossmann, J.M. Pinto, Long-term electricity procurement for large industrial consumers under uncertainty. Ind. Eng. Chem. Res. 57(9), 3333–3347 (2018)

    Article  Google Scholar 

  14. K. Zare, M.P. Moghaddam, M.K. Sheikh-El-Eslami, Risk-based electricity procurement for large consumers. IEEE Trans. Power Syst. 26(4), 1826–1835 (2011)

    Article  Google Scholar 

  15. S. Nojavan, H. allah Aalami, Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program. Energy Convers. Manag. 103, 1008–1018 (2015)

    Article  Google Scholar 

  16. S. Nojavan, H. Qesmati, K. Zare, H. Seyyedi, Large consumer electricity acquisition considering time-of-use rates demand response programs. Arab. J. Sci. Eng. 39(12), 8913–8923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. B.M. Soudmand, N.N. Esfetanaj, S. Mehdipour, R. Rezaeipour, Heating hub and power hub models for optimal performance of an industrial consumer. Energy Convers. Manag. 150, 425–432 (2017)

    Article  Google Scholar 

  18. X. Chen, G. Gong, Z. Wan, C. Zhang, Z. Tu, Performance study of a dual power source residential CCHP system based on PEMFC and PTSC. Energy Convers. Manag. 119, 163–176 (2016)

    Article  Google Scholar 

  19. F.A. Boyaghchi, M. Chavoshi, Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC. Sol. Energy 166, 351–370 (2018)

    Article  Google Scholar 

  20. J. Contreras, R. Espinola, F.J. Nogales, A.J. Conejo, ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003)

    Article  Google Scholar 

  21. H. Zareipour, C.A. Cañizares, K. Bhattacharya, J. Thomson, Application of public-domain market information to forecast Ontario’s wholesale electricity prices. IEEE Trans. Power Syst. 21(4), 1707–1717 (2006)

    Article  Google Scholar 

  22. C. Garcia-Martos, J. Rodriguez, M.J. Sanchez, Mixed models for short-run forecasting of electricity prices: application for the Spanish market. IEEE Trans. Power Syst. 22(2), 544–552 (2007)

    Article  Google Scholar 

  23. A.J. Conejo, M.A. Plazas, R. Espinola, A.B. Molina, Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 20(2), 1035–1042 (2005)

    Article  Google Scholar 

  24. N. Amjady, M. Hemmati, Day-ahead price forecasting of electricity markets by a hybrid intelligent system. Eur. T. Electr. Power 19(1), 89–102 (2009)

    Article  Google Scholar 

  25. N. Amjady, F. Keynia, Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm. IEEE Trans. Power Syst. 24(1), 306–318 (2009)

    Article  Google Scholar 

  26. C.P. Rodriguez, G.J. Anders, Energy price forecasting in the Ontario competitive power system market. IEEE Trans. Power Syst. 19(1), 366–374 (2004)

    Article  Google Scholar 

  27. J.P.S. Catalão, S.J.P.S. Mariano, V.M.F. Mendes, L.A.F.M. Ferreira, Short-term electricity prices forecasting in a competitive market: a neural network approach. Electr. Power Syst. Res. 77(10), 1297–1304 (2007)

    Article  Google Scholar 

  28. A.T. Lora, J.M.R. Santos, A.G. Exposito, J.L.M. Ramos, J.C.R. Santos, Electricity market price forecasting based on weighted nearest neighbors techniques. IEEE Trans. Power Syst. 22(3), 1294–1301 (2007)

    Article  Google Scholar 

  29. N. Amjady, Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans. Power Syst. 21(2), 887–896 (2006)

    Article  MathSciNet  Google Scholar 

  30. N.M. Pindoriya, S.N. Singh, S.K. Singh, An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Trans. Power Syst. 23(3), 1423–1432 (2008)

    Article  Google Scholar 

  31. M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets. Electr. Power Syst. Res. 78(11), 1989–1996 (2008)

    Article  Google Scholar 

  32. H.A. Aalami, H. Pashaei-Didani, S. Nojavan, Deriving nonlinear models for incentive-based demand response programs. International Journal of Electrical Power & Energy Systems. 2019 Mar 1;106:223–31

    Google Scholar 

  33. R.S. Ferreira, L.A. Barroso, M.M. Carvalho, Demand response models with correlated price data: a robust optimization approach. Appl. Energy 96, 133–149 (2012)

    Article  Google Scholar 

  34. R. Aazami, K. Aflaki, M.R. Haghifam, A demand response based solution for LMP management in power markets. Int. J. Electr. Power Energy Syst. 33(5), 1125–1132 (2011)

    Article  Google Scholar 

  35. D. Kathan, R. Aldina, M.P. Lee, L. Medearis, P. Sporborg, M. Tita, D. Wight, A. Wilkerson, F. Kreger, V. Richardson, W. Gifford, Assessment of demand response and advanced metering. Rapport technique. Federal Energy Regulatory Commission, USA. 2012 Dec.

    Google Scholar 

  36. H.A. Aalami, M. Parsa Moghaddam, G.R. Yousefi, Modeling and prioritizing demand response programs in power markets. Electr. Power Syst. Res. 80(4), 426–435 (2010)

    Article  Google Scholar 

  37. Y. Tang, H. Song, F. Hu, Y. Zou, Investigation on TOU pricing principles, in IEEE/PES Transmission and Distribution Conference and Exposition: Asia and Pacific, (2005), pp. 1–9

    Google Scholar 

  38. C.W. Gellings, J.H. Chamberlin, Demand-side Management: Concepts and Methods (The Fairmont Press, Lilburn, 1987)

    Google Scholar 

  39. P. Jazayeri et al., A survey of load control programs for price and system stability. IEEE Trans. Power Syst. 20(3), 1504–1509 (2005)

    Article  Google Scholar 

  40. C. River, Primer on demand-side management with an emphasis on price-responsive programs. Prepared for The World Bank by Charles River Associates. Tech Rep. 2005

    Google Scholar 

  41. J. Edward, P. Policy, Assessment of customer response to real time pricing. New Jersey: Edward J, Bloustein School of Planning and Public Policy, State University of New Jersey. 2005 Jun 30

    Google Scholar 

  42. H. Leng, X. Li, J. Zhu, H. Tang, Z. Zhang, N. Ghadimi, A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting. Adv. Eng. Inform 36, 20–30 (2018)

    Article  Google Scholar 

  43. M. Abbaspour, M. Satkin, B. Mohammadi-Ivatloo, F. Hoseinzadeh Lotfi, Y. Noorollahi, Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renew. Energy 51, 53–59 (2013)

    Article  Google Scholar 

  44. O. Abedinia, N. Amjady, N. Ghadimi, Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell. 34(1), 241–260 (2018)

    Article  MathSciNet  Google Scholar 

  45. D.T. Nguyen, L.B. Le, Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Trans. Smart Grid 5(4), 1608–1620 (2014)

    Article  Google Scholar 

  46. F. Mirzapour, M. Lakzaei, G. Varamini, M. Teimourian, N. Ghadimi, A new prediction model of battery and wind-solar output in hybrid power system. J. Ambient. Intell. Humaniz. Comput., 1–11 (2017)

    Google Scholar 

  47. D. Aydin, S.P. Casey, S. Riffat, The latest advancements on thermochemical heat storage systems. Renew. Sust. Energ. Rev. 41, 356–367 (2015)

    Article  Google Scholar 

  48. X. Song, L. Liu, T. Zhu, S. Chen, Z. Cao, Study of economic feasibility of a compound cool thermal storage system combining chilled water storage and ice storage. Appl. Therm. Eng. 133, 613–621 (2018)

    Article  Google Scholar 

  49. J.M. Morales, J. Perez-Ruiz, Point estimate schemes to solve the probabilistic power flow. IEEE Trans. Power Syst. 22(4), 1594–1601 (2007)

    Article  Google Scholar 

  50. C.-L. Su, Probabilistic load-flow computation using point estimate method. IEEE Trans. Power Syst. 20(4), 1843–1851 (2005)

    Article  MathSciNet  Google Scholar 

  51. S. Nojavan, A. Najafi-Ghalelou, M. Majidi, K. Zare, Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach. Energy 142, 250–257 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noradin Ghadimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teimourian, M., Ghadimi, N., Nojavan, S., Abedinia, O. (2019). The Concept of Large Consumer. In: Nojavan, S., Shafieezadeh, M., Ghadimi, N. (eds) Robust Energy Procurement of Large Electricity Consumers . Springer, Cham. https://doi.org/10.1007/978-3-030-03229-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03229-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03228-9

  • Online ISBN: 978-3-030-03229-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics