Skip to main content

Monitoring Series of Dependent Observations Using the sXWAM Control Chart for Residuals

  • Chapter
  • First Online:
Soft Modeling in Industrial Manufacturing

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 183))

  • 368 Accesses

Abstract

Control charts for monitoring residuals are the main tools for statistical process control of autocorrelated streams of data. X chart for residuals, calculated from a series of individual observations, is probably the most popular, but its statistical characteristics are not satisfactory, especially for charts designed using limited amount of data. In order to improve these characteristics, a new chart for residuals using the concept of weighted model averaging (XWAM chart) was previously proposed by the authors. Unfortunately, the design of the XWAM chart is rather complicated, and it requires significant computational effort. In this paper, we propose its simplification, named sXWAM chart, which is simpler to design, and in some practically important cases, has similar statistical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: Time Series analysis and control through parametric model. In: Findley, D.F. (ed.) Applied Time Series Analysis. Academic Press, New York (1978)

    MATH  Google Scholar 

  2. Albers, W., Kallenberg, C.M.: Estimation in Shewhart control charts: effects and corrections. Metrika 59, 207–234 (2004)

    Article  MathSciNet  Google Scholar 

  3. Alwan, L.C., Roberts, H.V.: Time-series modeling for statistical process control. J. Bus. Econ. Stat. 6, 87–95 (1988)

    Google Scholar 

  4. Apley, D.W., Chin, C.: An optimal filter design approach to statistical process control. J. Qual. Technol. 39, 93–117 (2007)

    Article  Google Scholar 

  5. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 359–370 (1994)

    Google Scholar 

  6. Apley, D.W., Lee, H.C.: Robustness comparison of exponentially weighted moving-average charts on autocorrelated data and on residuals. J. Qual. Technol. 40, 428–447 (2008)

    Article  Google Scholar 

  7. Box, G.E.P., Jenkins, G.M., MacGregor, J.F.: Some recent advances in forecasting and control. Part II. J. R. Stat. Soc. Ser. C 23, 158–179 (1974)

    Google Scholar 

  8. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis. Forecasting and Control, 4th edn. J. Wiley, Hoboken NJ (2008)

    Google Scholar 

  9. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002)

    Book  Google Scholar 

  10. Chakraborti, S.: Run length, average run length and false alarm length of Shewhart X-bar chart: exact derivations by conditioning. Communications in Statistics—Simulations and Computations 29, 61–81 (2000)

    Article  Google Scholar 

  11. Chin, C.-H., Apley, D.W.: Optimal design of second-order linear filters for control charting. Technometrics 48, 337–348 (2006)

    Article  MathSciNet  Google Scholar 

  12. De Ketelaere, B., Hubert, M., Schmitt, E.: Overview of PCA-based statistical process-monitoring methods for time-dependent. High-Dimens. Data. J. Qual. Technol. 47, 318–335 (2015)

    Article  Google Scholar 

  13. Geweke, J.: Contemporary Bayesian Econometrics and Statistics. J. Wiley, Hoboken, NJ (2005)

    Book  Google Scholar 

  14. Hryniewicz, O., Kaczmarek, K.: Bayesian analysis of time series using granular computing approach. Appl. Soft Comput. J. 47, 644–652 (2016)

    Article  Google Scholar 

  15. Hryniewicz, O., Kaczmarek-Majer, K.: Monitoring of short series of dependent observations using a control chart approach and data mining techniques. In: Proceedings of the International Workshop ISQC 2016, Helmut Schmidt Universität, Hamburg, pp. 143–161 (2016)

    Google Scholar 

  16. Hryniewicz, O., Kaczmarek-Majer, K.: Monitoring of short series of dependent observations using a XWAM control chart. In: Knoth, S., Schmid, W. (eds.) Frontiers in Statistical Quality Control 12. pp. 233–255, Springer, Heidelberg (2018)

    Google Scholar 

  17. Jiang, W., Tsui, K., Woodall, W.H.: A new SPC monitoring method: The ARMA chart. Technometrics 42, 399–410 (2000)

    Article  Google Scholar 

  18. Köksal, G., Kantar, B., Ula, T.A., Testik, M.C.: The effect of phase I sample size on the run length performance of control charts for autocorrelated data. J. Appl. Stat. 35, 67–87 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kramer, H., Schmid, W.: The influence of parameter estimation on the ARL of Shewhart type charts for time series. Stat. Pap. 41, 173–196 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lu, C.W., Reynolds Jr., M.R.: Control charts for monitoring the mean and variance of autocorrelated processes. J. Qual. Technol. 31, 259–274 (1999)

    Article  Google Scholar 

  21. Maragah, H.D., Woodall, W.H.: The effect of autocorrelation on the retrospective X-chart. J. Stat. Simul. Comput. 40, 29–42 (1992)

    Article  Google Scholar 

  22. Montgomery, D.C.: Introduction To Statistical Quality Control, 6th edn. J. Wiley, New York (2011)

    MATH  Google Scholar 

  23. Montgomery, D.C., Mastrangelo, C.M.: Some statistical process control methods for autocorrelated data (with discussion). J. Qual. Technol. 23, 179–204 (1991)

    Article  Google Scholar 

  24. Schmid, W.: On the run length of Shewhart chart for correlated data. Stat. Pap. 36, 111–130 (1995)

    Article  MathSciNet  Google Scholar 

  25. Runger, G.C.: Assignable causes and autocorrelation: control charts for observations or residuals? J. Qual. Technol. 34, 165–170 (2002)

    Article  Google Scholar 

  26. Vasilopoulos, A.V., Stamboulis, A.P.: Modification of control chart limits in the presence of data correlation. J. Qual. Technol. 10, 20–30 (1978)

    Article  Google Scholar 

  27. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26, 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wardell, D.G., Moskowitz, H., Plante, R.D.: Run-length distributions of special-cause control charts for correlated processes (with disscussion). Technometrics 36, 3–27 (1994)

    Article  MathSciNet  Google Scholar 

  29. Yashchin, E.: Performance of CUSUM control schemes for serially correlated observations. Technometrics 35, 37–52 (1993)

    Article  MathSciNet  Google Scholar 

  30. Zhang, N.F.: Detection capability of residual chart for autocorrelated data. J. Appl. Stat. 24, 475–492 (1997)

    Article  Google Scholar 

  31. Zhang, N.F.: A statistical control chart for stationary process data. Technometrics 40, 24–38 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olgierd Hryniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hryniewicz, O., Kaczmarek-Majer, K. (2019). Monitoring Series of Dependent Observations Using the sXWAM Control Chart for Residuals. In: Grzegorzewski, P., Kochanski, A., Kacprzyk, J. (eds) Soft Modeling in Industrial Manufacturing. Studies in Systems, Decision and Control, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-03201-2_9

Download citation

Publish with us

Policies and ethics