Skip to main content

Solvent Effects on the O2(a1g) → O2(b1\(\Sigma_{\text{g}}^{ + }\)) Transition

  • Chapter
  • First Online:
The Electronic Transitions of Molecular Oxygen

Part of the book series: Springer Theses ((Springer Theses))

  • 313 Accesses

Abstract

In contrast to the O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(X3\(\Sigma_{\text{g}}^{ - }\)) and O2(a1g) → O2(X3\(\Sigma_{\text{g}}^{ - }\)) transitions, the O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(a1g) transition is not forbidden by the selection rule for spin, only those regarding parity, symmetry, and angular momentum [1]. As such, this transition is presumably stronger and more readily detected in a spectroscopic experiment. Unfortunately, the transition falls in a spectral region (~1920 nm, ~5200 cm−1), where fast photomultiplier tubes generally do not function, and we have to rely on slow and insensitive semiconductor devices to detect the desired signal. Therefore, the inherently short lifetime of O2(b1\(\Sigma_{\text{g}}^{ + }\)) in solution limits the range of systems where O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(a1g) fluorescence can be detected with time-resolution [2].

Parts of this chapter have been adapted with permission from Bregnhøj and Ogilby [14] and from Bregnhøj, Westberg, Minaev, and Ogilby [46].

Copyright 2015 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herzberg, G.: Spectra of Diatomic Molecules, 2nd edn. Van Nostrand Reinhold (1950)

    Google Scholar 

  2. Weldon, D., Poulsen, T.D., Mikkelsen, K.V., Ogilby, P.R.: Singlet sigma: the “other” singlet oxygen in solution. Photochem. Photobiol. 70, 369–379 (1999)

    Article  CAS  Google Scholar 

  3. Weldon, D., Ogilby, P.R.: Time-resolved absorption spectrum of singlet oxygen in solution. J. Am. Chem. Soc. 120, 12978–12979 (1998)

    Article  CAS  Google Scholar 

  4. Bachilo, S., Nichiporovich, I., Losev, A.: Detection of a1g to b1Σ +g oxygen absorption in solutions. J. Appl. Spectrosc. 65, 849–852 (1998)

    Article  CAS  Google Scholar 

  5. Andersen, L.K., Ogilby, P.R.: Time-resolved detection of singlet oxygen in a transmission microscope. Photochem. Photobiol. 73, 489–492 (2001)

    Article  CAS  Google Scholar 

  6. Snyder, J.W., et al.: Singlet oxygen microscope: from phase-separated polymers to single biological cells. Acc. Chem. Res. 37, 894–901 (2004)

    Article  CAS  Google Scholar 

  7. Ogilby, P.R.: Solvent effects on the radiative transitions of singlet oxygen. Acc. Chem. Res. 32, 512–519 (1999)

    Article  CAS  Google Scholar 

  8. Dam, N., Keszthelyi, T., Andersen, L.K., Mikkelsen, K.V., Ogilby, P.R.: Effect of solvent on the O2 (a1Δg) → O2 (b1Σ +g ) absorption spectrum: demonstrating the importance of equilibrium vs nonequilibrium solvation. J. Phys. Chem. A 106, 5263–5270 (2002)

    Article  CAS  Google Scholar 

  9. Minaev, B.F., Ågren, H.: Collision-induced b1Σ +g –a1 Δg, b1Σ +g –X3Σ g and a1Δg–X3Σ g transition probabilities in molecular oxygen. J. Chem. Soc., Faraday Trans. 93, 2231–2239 (1997)

    Article  CAS  Google Scholar 

  10. Minaev, B.F.: Electronic mechanisms of activation of molecular oxygen. Russ. Chem. Rev. 76, 988–1010 (2007)

    Article  Google Scholar 

  11. Andersen, L.K., Ogilby, P.R.: Absorption spectrum of singlet oxygen (a1Δg → b1Σ +g ) in D2O: enabling the test of a model for the effect of solvent on oxygen’s radiative transitions. J. Phys. Chem. A 106, 11064–11069 (2002)

    Article  CAS  Google Scholar 

  12. Schmidt, R., Bodesheim, M.: Collision-induced radiative transitions b1Σ +g  → a1Δg, b1Σ +g  → X3Σ g , and a1Δg → X3Σ g of O2. J. Phys. Chem. 99, 15919–15924 (1995)

    Article  CAS  Google Scholar 

  13. Andersen, L.K., Ogilby, P.R.: A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev. Sci. Instrum. 73, 4313–4325 (2002)

    Article  CAS  Google Scholar 

  14. Bregnhøj, M., Ogilby, P.R.: Effect of solvent on the O2(a1Δg) → O2(b1Σ +g ) absorption coefficient. J. Phys. Chem. A 119, 9236–9243 (2015)

    Article  Google Scholar 

  15. Terazima, M., Hirota, N., Shinohara, H., Saito, Y.: Photothermal investigation of the triplet state of carbon molecule (C60). J. Phys. Chem. 95, 9080–9085 (1991)

    Article  CAS  Google Scholar 

  16. Schmidt, R., Tanielian, C., Dunsbach, R., Wolff, C.: Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. J. Photochem. Photobiol., A 79, 11–17 (1994)

    Article  CAS  Google Scholar 

  17. Hung, R.R., Grabowski, J.J.: A precise determination of the triplet energy of carbon (C60) by photoacoustic calorimetry. J. Phys. Chem. 95, 6073–6075 (1991)

    Article  CAS  Google Scholar 

  18. Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. an expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)

    Article  CAS  Google Scholar 

  19. Bazin, M., Ebbesen, T.W.: Distortions in laser flash photolysis absorption measurements. The overlap problem. Photochem. Photobiol. 37, 675–678 (1983)

    Article  CAS  Google Scholar 

  20. Einstein, A.: Zur quantentheorie der strahlung. Physik. Z. 18 (1917)

    Google Scholar 

  21. Kleppner, D.: Rereading Einstein on radiation. Rev. Bras. Ensino Fís. 27, 87–91 (2005)

    Article  Google Scholar 

  22. Strickler, S., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962)

    Article  CAS  Google Scholar 

  23. Birks, J.B., Dyson, D.: The relations between the fluorescence and absorption properties of organic molecules. Proc. R. Soc. A 275, 135–148 (1963)

    Article  CAS  Google Scholar 

  24. Klán, P., Wirz, J.: Photochemistry of Organic Compounds: From Concepts to Practice. Wiley (2009)

    Google Scholar 

  25. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer (2007)

    Google Scholar 

  26. Hirayama, S., Phillips, D.: Correction for refractive index in the comparison of radiative lifetimes in vapour and solution phases. J. Photochem. 12, 139–145 (1980)

    Article  CAS  Google Scholar 

  27. Lewis, G.N., Kasha, M.: Phosphorescence in fluid media and the reverse process of singlet-triplet absorption. J. Am. Chem. Soc. 67, 994–1003 (1945)

    Article  CAS  Google Scholar 

  28. Azumi, T., O’donnell, C., McGlynn, S.: On the multiplicity of the phosphorescent state of organic molecules. J. Chem. Phys. 45, 2735–2742 (1966)

    Article  CAS  Google Scholar 

  29. Crosby, G.A., Demas, J.N.: Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)

    Article  CAS  Google Scholar 

  30. Keszthelyi, T., Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: O2(a1Δg) absorption and O2(b1Σ +g ) emission in solution: quantifying the a-b Stokes shift. J. Phys. Chem. A 104, 10550–10555 (2000)

    Article  CAS  Google Scholar 

  31. Schmidt, R., Shafii, F., Hild, M.: The mechanism of the solvent perturbation of the a1Δg → X3Σ g radiative transition of O2. J. Phys. Chem. A 103, 2599–2605 (1999)

    Article  CAS  Google Scholar 

  32. van der Bondi, A.: Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  33. Hild, M., Schmidt, R.: The mechanism of the collision-induced enhancement of the a1Δg → X3Σ g and b1Σ +g  → a1Δg radiative transitions of O2. J. Phys. Chem. A 103, 6091–6096 (1999)

    Article  CAS  Google Scholar 

  34. Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: Solvent effects on the O2(a1Δg)–O2 (X3Σ g ) radiative transition: comments regarding charge-transfer interactions. J. Phys. Chem. A 102, 9829–9832 (1998)

    Article  CAS  Google Scholar 

  35. Scurlock, R.D., Ogilby, P.R.: Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen O2(a1g). J. Phys. Chem. 91, 4599–4602 (1987)

    Article  CAS  Google Scholar 

  36. Minaev, B.F., Lunell, S., Kobzev, G.: The influence of intermolecular interaction on the forbidden near-IR transitions in molecular oxygen. J. Mol. Struct. Theochem 284, 1–9 (1993)

    Article  Google Scholar 

  37. Tinkham, M., Strandberg, M.W.P.: Theory of the fine structure of the molecular oxygen ground state. Phys. Rev. 97, 937 (1955)

    Article  CAS  Google Scholar 

  38. Klotz, R., Marian, C.M., Peyerimhoff, S.D., Hess, B.A., Buenker, R.J.: Calculation of spin-forbidden radiative transitions using correlated wavefunctions: lifetimes of b1Σ +g , a1Δg states in O2, S2 and SO. Chem. Phys. 89, 223–236 (1984)

    Article  CAS  Google Scholar 

  39. Minaev, B.F., Murugan, N.A., Ågren, H.: Dioxygen spectra and bioactivation. Int. J. Quant. Chem. 113, 1847–1867 (2013)

    Article  CAS  Google Scholar 

  40. Cosby, P.C., Sharpee, B.D., Slanger, T.G., Huestis, D.L., Hanuschik, R.W.: High‐resolution terrestrial nightglow emission line atlas from UVES/VLT: positions, intensities, and identifications for 2808 lines at 314–1043 nm. J. Geophys. Res. 111 (2006)

    Google Scholar 

  41. Slanger, T.G., Copeland, R.A.: Energetic oxygen in the upper atmosphere and the laboratory. Chem. Rev. 103, 4731–4766 (2003)

    Article  CAS  Google Scholar 

  42. Minaev, B.F.: Intensities of spin-forbidden transitions in molecular oxygen and selective heavy-atom effects. Int. J. Quant. Chem. 17, 367–374 (1980)

    Article  CAS  Google Scholar 

  43. Noxon, J.: Observation of the transition in O2. Can. J. Phys. 39, 1110–1119 (1961)

    Article  CAS  Google Scholar 

  44. Becker, A., Schurath, U., Dubost, H., Galaup, J.: Luminescence of metastable 16O2(18O2) in solid argon: relaxation and energy transfer. Chem. Phys. 125, 321–336 (1988)

    Article  CAS  Google Scholar 

  45. Fink, E., Setzer, K., Wildt, J., Ramsay, D., Vervloet, M.: Collision-induced emission of O2(b1Σ +g  → a1Δg) in the gas phase. Int. J. Quant. Chem. 39, 287–298 (1991)

    Article  CAS  Google Scholar 

  46. Bregnhøj, M., Westberg, M., Minaev, B.F., Ogilby, P.R.: Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res. 50(8), 1920–1927 (2017)

    Article  Google Scholar 

  47. Minaev, B.F., Lunell, S., Kobzev, G.I.: Collision-Induced intensity of the b1Σ +g –a1Δg transition in molecular oxygen: model calculations for the collision complex O2 + H2. Int. J. Quant. Chem. 50, 279–292 (1994)

    Article  CAS  Google Scholar 

  48. Darmanyan, A.P.: Effect of charge-transfer interactions on the radiative rate constant of 1Δg singlet oxygen. J. Phys. Chem. A 102, 9833–9837 (1998)

    Article  CAS  Google Scholar 

  49. Schmidt, R., Afshari, E.: Comment on “Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen (1g)”. J. Phys. Chem. 94, 4377–4378 (1990)

    Article  CAS  Google Scholar 

  50. Ogilby, P.R.: Radiative lifetime of singlet molecular oxygen (1gO2): comment. J. Phys. Chem. 93, 4691–4692 (1989)

    Article  CAS  Google Scholar 

  51. Bregnhøj, M., Krægpøth, M.V., Sørensen, R.J., Westberg, M., Ogilby, P.R.: Solvent and heavy-atom effects on the O2(X3Σ g ) → O2(b1Σ +g ) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)

    Article  Google Scholar 

  52. Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)

    Article  CAS  Google Scholar 

  53. Wessels, J.M., Rodgers, M.A.: Effect of solvent polarizability on the forbidden 1Δg → 3Σ g transition in molecular oxygen: a Fourier transform near-infrared luminescence study. J. Phys. Chem. 99, 17586–17592 (1995)

    Article  CAS  Google Scholar 

  54. Georges, T.T., MacPherson, A.N.: Fourier-transform luminescence spectroscopy of solvated singlet oxygen. J. Chem. Soc., Faraday Trans. 90, 1065–1072 (1994)

    Article  Google Scholar 

  55. Schmidt, R.: Solvent shift of the 1Δg → 3Σ g phosphorescence of O2. J. Phys. Chem. 100, 8049–8052 (1996)

    Article  CAS  Google Scholar 

  56. McGlynn, S.P., Azumi, T., Kinoshita, M.: Molecular Spectroscopy of the Triplet State. Prentice-Hall (1969)

    Google Scholar 

  57. McRae, E.: Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. 61, 562–572 (1957)

    Article  CAS  Google Scholar 

  58. Zipp, A., Kauzmann, W.: Anomalous effect of pressure on spectral solvent shifts in water and perfluoro n-hexane. J. Chem. Phys. 59, 4215–4224 (1973)

    Article  CAS  Google Scholar 

  59. Jensen, R.L., Holmegaard, L., Ogilby, P.R.: Temperature effect on radiative lifetimes: the case of singlet oxygen in liquid solvents. J. Phys. Chem. B 117, 16227–16235 (2013)

    Article  CAS  Google Scholar 

  60. Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: The a1Δg → X3Σ g transition in molecular oxygen: interpretation of solvent effects on spectral shifts. J. Phys. Chem. A 103, 3418–3422 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Bregnhøj .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bregnhøj, M. (2019). Solvent Effects on the O2(a1g) → O2(b1\(\Sigma_{\text{g}}^{ + }\)) Transition. In: The Electronic Transitions of Molecular Oxygen. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03183-1_4

Download citation

Publish with us

Policies and ethics