Skip to main content

Direct \({\text{O}}_{2} ({\text{X}}^{3}\Sigma _{\text{g}}^{ - }) \to {\text{O}}_{2} ({\text{b}}^{1} \Sigma_{\text{g}}^{ + } )\) Excitation

  • Chapter
  • First Online:
The Electronic Transitions of Molecular Oxygen

Part of the book series: Springer Theses ((Springer Theses))

  • 328 Accesses

Abstract

Over the years, singlet oxygen has traditionally (and often with great success) been produced in a photosensitized process (see Chap. 1). The very fact that the singlet oxygen precursor is an excited electronic state of a molecule allows for a great deal of control over when and where singlet oxygen is formed. This is particularly relevant if one wants to study biological systems where focused lasers and microscopes may be used to, for example, illuminate and perturb a specific sensitizer-incubated organelle of a cell.

Parts of this chapter have been adapted with permission from Bregnhøj, M., Blazquez-Castro, A., Westberg, M., Breitenbach, T. & Ogilby, P. R. Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015), Bregnhøj, M., Krægpøth, M. V., Sørensen, R. J., Westberg, M. & Ogilby, P. R. Solvent and Heavy-Atom Effects on the \({\text{O}}_{2} ({\text{X}}^{3} \Sigma_{\text{g}}^{ - } ) \to {\text{O}}_{2} ({\text{b}}^{1} \Sigma_{\text{g}}^{ + } )\) Absorption Transition. J. Phys. Chem. A 120, 8285–8296 (2016), and Westberg, M. et al. Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol. A 321, 297–308 (2016).

Copyright 2015/2016 American Chemical Society and Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westberg, M., et al.: Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 109, 81–91 (2016)

    Article  CAS  Google Scholar 

  2. Westberg, M., et al.: Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol., A 321, 297–308 (2016)

    Article  CAS  Google Scholar 

  3. Ogilby, P.R.: Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)

    Article  CAS  Google Scholar 

  4. da Silva, E.F., et al.: Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integr. Biol. 8, 177–193 (2016)

    Article  Google Scholar 

  5. Planas, O., et al.: Newest approaches to singlet oxygen photosensitisation in biological media. Photochemistry, pp. 233–278 (2014)

    Google Scholar 

  6. Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)

    Article  CAS  Google Scholar 

  7. Bregnhøj, M., Blazquez-Castro, A., Westberg, M., Breitenbach, T., Ogilby, P.R.: Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015)

    Article  Google Scholar 

  8. Anquez, F., Belkoura, I.E.Y., Suret, P., Randoux, S., Courtade, E.: Cell death induced by direct laser activation of singlet oxygen at 1270 nm. Laser Phys. 23, 025601 (2013)

    Article  Google Scholar 

  9. Herzberg, G.: Spectra of Diatomic Molecules: 2nd ed (Van Nostrand Reinhold, 1950)

    Google Scholar 

  10. Krasnovsky Jr., A., Drozdova, N., Ivanov, A., Ambartsumian, R.: Activation of molecular oxygen by infrared laser radiation in pigment-free aerobic systems. Biochemistry (Moscow) 68, 963–966 (2003)

    Article  CAS  Google Scholar 

  11. Jockusch, S., et al.: Singlet molecular oxygen by direct excitation. Photochem. Photobiol. Sci. 7, 235–239 (2008)

    Article  CAS  Google Scholar 

  12. Hermans, C., et al.: Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O. Environ. Sci. Pollut. Res. 6, 151–158 (1999)

    Article  CAS  Google Scholar 

  13. Newnham, D.A., Ballard, J.: Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4). J. Geophys. Res. 103, 28801–28815 (1998)

    Article  CAS  Google Scholar 

  14. Fink, E., Setzer, K., Wildt, J., Ramsay, D., Vervloet, M.: Collision-induced emission of O2 (b1Σ +g  → a1Δg) in the gas phase. Int. J. Quant. Chem. 39, 287–298 (1991)

    Article  CAS  Google Scholar 

  15. Long, C., Kearns, D.R.: Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen. J. Chem. Phys. 59, 5729–5736 (1973)

    Article  CAS  Google Scholar 

  16. Evans, D.: Oxidation by photochemically produced singlet states of oxygen. J. Chem. Soc. D:Chem. Comm., 367–368 (1969)

    Google Scholar 

  17. Greenblatt, G.D., Orlando, J.J., Burkholder, J.B., Ravishankara, A.: Absorption measurements of oxygen between 330 and 1140 nm. J. Geophys. Res. 95, 18577–18582 (1990)

    Article  CAS  Google Scholar 

  18. Vorobjev, I.A., Liang, H., Wright, W.H., Berns, M.W.: Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. Biophys. J. 64, 533–538 (1993)

    Article  CAS  Google Scholar 

  19. Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M.: Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    Article  CAS  Google Scholar 

  20. Thanh, S. Photogenerated singlet oxygen damages cells in optical traps. arXiv, Cornell University Press (2009)

    Google Scholar 

  21. Anquez, F., Yazidi-Belkoura, E., Randoux, S., Suret, P., Courtade, E.: Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem. Photobiol. 88, 167–174 (2012)

    Article  CAS  Google Scholar 

  22. Scurlock, R.D., Wang, B., Ogilby, P.R.: Chemical reactivity of singlet sigma oxygen (b1Σ +g ) in solution. J. Am. Chem. Soc. 118, 388–392 (1996)

    Article  CAS  Google Scholar 

  23. Bregnhøj, M., Krægpøth, M.V., Sørensen, R.J., Westberg, M., Ogilby, P.R.: Solvent and heavy-atom effects on the O2(X3Σ g ) → O2(b1Σ +g ) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)

    Article  Google Scholar 

  24. Demtröder, W.: Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 2013)

    Google Scholar 

  25. Wessels, J.M., Rodgers, M.A.: Effect of solvent polarizability on the forbidden \(^{1} \Delta_{g} \to^{3} \Sigma_{\text{g}}^{ - }\) transition in molecular oxygen: a fourier transform near-infrared luminescence study. J. Phys. Chem. 99:17586–17592 (1995)

    Article  CAS  Google Scholar 

  26. Truscott, T.G., MacPherson, A.N.: Fourier-transform luminescence spectroscopy of solvated singlet oxygen. J. Chem. Soc., Faraday Trans. 90, 1065–1072 (1994)

    Article  Google Scholar 

  27. Dam, N., Keszthelyi, T., Andersen, L. K., Mikkelsen, K.V., Ogilby, P.R.: Effect of solvent on the \({\text{O}}_{2} \left( {{\text{a}}^{1} \Delta_{\text{g}} } \right) \, \to {\text{ O}}_{2} \left( {{\text{b}}^{1} \Sigma_{\text{g}}^{ + } } \right)\) absorption spectrum: demonstrating the Importance of Equilibrium vs Nonequilibrium Solvation. J. Phys. Chem. A 106, 5263–5270 (2002)

    Article  CAS  Google Scholar 

  28. Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)

    Article  CAS  Google Scholar 

  29. Chou, P., Wei, G., Lin, C., Wei, C., Chang, C. Direct spectroscopic evidence of photosensitized O2 765 nm \(\left( {^{1} \Sigma_{g}^{ + } \to^{3} \Sigma_{g}^{ - } } \right)\) and O2 Dimol 634 and 703 nm \(\left( {(^{1} \Delta_{\text{g}} )_{2} \to \left( {^{3} \Sigma_{g}^{ - } } \right)_{2} } \right)\) Vibronic Emission in Solution. J. Am. Chem. Soc. 118, 3031-3032 (1996)

    Article  CAS  Google Scholar 

  30. Keszthelyi, T., Poulsen, T. D., Ogilby, P.R. and Mikkelsen, K.V.: O2 (a1Δg) Absorption and \(O_{2} \left( {b^{1} \Sigma_{\text{g}}^{ + } } \right)\) emission in solution: quantifying the a–b stokes shift. J. Phys. Chem. A 104, 10550–10555 (2000)

    Google Scholar 

  31. Arnbjerg, J., et al.: One-and two-photon photosensitized singlet oxygen production: characterization of aromatic ketones as sensitizer standards. J. Phys. Chem. A 111, 5756–5767 (2007)

    Article  CAS  Google Scholar 

  32. Martí, C., Jürgens, O., Cuenca, O., Casals, M., Nonell, S.: Aromatic ketones as standards for singlet molecular oxygen O2(1Δg) photosensitization. Time-resolved photoacoustic and near-IR emission studies. J. Photochem. Photobiol., A 97, 11–18 (1996)

    Article  Google Scholar 

  33. Gorman, A., Hamblett, I., Lambert, C., Spencer, B., Standen, M.: Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(a1g), with both physical and chemical quenchers: variable-temperature, time-resolved infrared luminescence studies. J. Am. Chem. Soc. 110, 8053–8059 (1988)

    Article  CAS  Google Scholar 

  34. Gorman, A., Gould, I., Hamblett, I.: Time-resolved study of the solvent and temperature dependence of singlet oxygen (1Δg) reactivity toward enol ethers: reactivity parameters typical of rapid reversible exciplex formation. J. Am. Chem. Soc. 104, 7098–7104 (1982)

    Article  CAS  Google Scholar 

  35. Gorman, A., Lovering, G., Rodgers, M.: The entropy-controlled reactivity of singlet oxygen (1g) toward furans and indoles in toluene. A variable-temperature study by pulse radiolysis. J. Am. Chem. Soc. 101, 3050–3055 (1979)

    Article  CAS  Google Scholar 

  36. Peters, G., Rodgers, M.: Time-resolved determinations of deuterium isotope effects on O2(1g) lifetimes in solution. J. Am. Chem. Soc. 103, 6759–6761 (1981)

    Article  CAS  Google Scholar 

  37. Jensen, R.L., Arnbjerg, J., Ogilby, P.R.: Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J. Am. Chem. Soc. 134, 9820–9826 (2012)

    Article  CAS  Google Scholar 

  38. Lebrun, V., et al.: Efficient oxidation and destabilization of Zn (Cys) 4 zinc fingers by singlet oxygen. Angew. Chem. Int. Ed. 126, 9519–9522 (2014)

    Article  Google Scholar 

  39. Goličnik, M.: On the lambert W function and its utility in biochemical kinetics. Biochem. Eng. J. 63, 116–123 (2012)

    Article  Google Scholar 

  40. Patel, C., Tam, A.: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517–553 (1981)

    Article  CAS  Google Scholar 

  41. Crosby, G.A., Demas, J.N.: Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)

    Article  CAS  Google Scholar 

  42. Battino, R., Rettich, T.R., Tominaga, T.: The solubility of oxygen and ozone in liquids. J. Chem. Phys. Ref. Data 12, 163–178 (1983)

    Article  CAS  Google Scholar 

  43. Poulsen, T.D., Ogilby P.R., Mikkelsen, K.V.: Solvent Effects on the \({\text{O}}_{2} \left( {{\text{a}}^{1} \Delta_{\text{g}} } \right) \, - {\text{ O}}_{2} ({\text{X}}_{3} \Sigma_{\text{g}}^{ - } )\) radiative transition: comments regarding charge-transfer interactions. J. Phys. Chem. A 102, 9829–9832 (1998)

    Google Scholar 

  44. Sánchez, M.A., Mainar, A.M., Pardo, J.I., López, M.C., Urieta, J.S.: Solubility of nonpolar gases in 2, 2, 2-trifluoroethanol and 1, 1, 1, 3, 3, 3-hexafluoropropan-2-ol at several temperatures and 101.33 kPa partial pressure of gas. Can. J. Chem. 79, 1460–1465 (2001)

    Article  Google Scholar 

  45. Scurlock, R.D., Ogilby, P.R.: Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen O2(a1g). J. Phys. Chem. 91, 4599–4602 (1987)

    Article  CAS  Google Scholar 

  46. Krasnovsky, A., Kozlov, A., Roumbal, Y.V.: Photochemical investigation of the IR absorption bands of molecular oxygen in organic and aqueous environment. Photochem. Photobiol. Sci. 11, 988–997 (2012)

    Article  CAS  Google Scholar 

  47. Scurlock, R.D. & Ogilby, P.R. Singlet molecular oxygen (1ΔgO2) formation upon irradiation of an oxygen \((^{3} \Sigma_{\text{g}}^{ - } O_{2} )\)-organic molecule charge-transfer absorption band. J. Phys. Chem. 93, 5493–5500 (1989)

    Google Scholar 

  48. Evans, D. Molecular association of oxygen and aromatic substances. J. Chem. Soc., 345–347 (1953)

    Google Scholar 

  49. Munck, A.U., Scott, J.F.: Ultra-violet absorption of oxygen in organic solvents. Nature 177, 587 (1956)

    Article  CAS  Google Scholar 

  50. Tsubomura, H., Mulliken, R.: Molecular complexes and their spectra. XII. Ultraviolet absorption spectra caused by the interaction of oxygen with organic molecules. J. Am. Chem. Soc. 82, 5966–5974 (1960)

    Article  CAS  Google Scholar 

  51. Saylor, J.H., Battino, R.: The solubilities of the rare gases in some simple benzene derivatives. J. Phys. Chem. 62, 1334–1337 (1958)

    Article  CAS  Google Scholar 

  52. Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977)

    Article  CAS  Google Scholar 

  53. Pimenta, F.M., et al.: Singlet-oxygen-mediated cell death using spatially-localized two-photon excitation of an extracellular sensitizer. J. Phys. Chem. B 116, 10234–10246 (2012)

    Article  CAS  Google Scholar 

  54. Morse, P.D., Swartz, H.M.: Measurement of intracellular oxygen concentration using the spin label TEMPOL. Magn. Reson. Med. 2, 114–127 (1985)

    Article  Google Scholar 

  55. Hatz, S., Poulsen, L., Ogilby, P.R.: Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration. Photochem. Photobiol. 84, 1284–1290 (2008)

    Article  CAS  Google Scholar 

  56. Pedersen, B.W., Breitenbach, T., Redmond, R.W., Ogilby, P.R.: Two-photon irradiation of an intracellular singlet oxygen photosensitizer: achieving localized sub-cellular excitation in spatially-resolved experiments. Free Radic. Res. 44, 1383–1397 (2010)

    Article  CAS  Google Scholar 

  57. Westberg, M., Holmegaard, L., Pimenta, F.M., Etzerodt, M., Ogilby, P.R.: Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J. Am. Chem. Soc. 137, 1632–1642 (2015)

    Article  CAS  Google Scholar 

  58. Blázquez-Castro, A., Breitenbach, T., Ogilby, P.R.: Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level. Photochem. Photobiol. Sci. 13, 1235–1240 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Bregnhøj .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bregnhøj, M. (2019). Direct \({\text{O}}_{2} ({\text{X}}^{3}\Sigma _{\text{g}}^{ - }) \to {\text{O}}_{2} ({\text{b}}^{1} \Sigma_{\text{g}}^{ + } )\) Excitation . In: The Electronic Transitions of Molecular Oxygen. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03183-1_3

Download citation

Publish with us

Policies and ethics