Skip to main content

Instrumentation and Experimental Techniques

  • Chapter
  • First Online:
The Electronic Transitions of Molecular Oxygen

Part of the book series: Springer Theses ((Springer Theses))

  • 323 Accesses

Abstract

Our main light source is a femtosecond laser system described extensively in the literature. The main oscillator is a Ti:Sapphire laser (Spectra Physics Tsunami 3941) pumped by a continuous wave Nd:YVO4 laser (Spectra Physics Millenia V). The oscillator delivers ≈ 100 fs pulses at a repetition rate of 80 MHz, tunable over the range 730–900 nm. The pulse energy of the Tsunami is amplified by a factor of ≈10 in a regenerative amplifier (Spectra Physics Spitfire) pumped by a Q-switched Nd:YLF laser (Spectra Physics Evolution). The amplification process reduces the repetition rate to 1 kHz, and limits the tunable range to 765–840 nm while stretching the pulses to 100–150 fs. When other wavelengths are required, the Spitfire output can either be frequency-doubled in a BBO crystal or be used to pump an optical parametric amplifier (Spectra Physics OPA-900CF-1). This extends the spectral range to 300–3000 nm when combined with second or fourth harmonic generation of the signal or the idler beam.

Parts of this chapter have been adapted with permission from Bregnhøj, M., & Ogilby, P. R. (2015). Effect of Solvent on the \({\text{O}}_{2} ({\text{X}}^{3} \Sigma_{\text{g}}^{ - } ) \to {\text{O}}_{2} ({\text{b}}^{1} \Sigma_{\text{g}}^{ + } )\) Absorption Coefficient. J. Phys. Chem. A, 119(35), 9236–9243, and Bregnhøj, M., Rodal-Cedeira, S., Pastoriza-Santos, I. & Ogilby, P. R. (2018). Light Scattering versus Plasmon Effects: Optical Transitions in Molecular Oxygen near a Metal Nanoparticle, J. Phys. Chem. C, 122(27), 15625–15634.

Copyright 2015/2018 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frederiksen, P.K., et al.: Two-photon photosensitized production of singlet oxygen in water. J. Am. Chem. Soc. 127, 255–269 (2005)

    Article  CAS  Google Scholar 

  2. Arnbjerg, J., Johnsen, M., Frederiksen, P.K., Braslavsky, S.E., Ogilby, P.R.: Two-photon photosensitized production of singlet oxygen: Optical and optoacoustic characterization of absolute two-photon absorption cross sections for standard sensitizers in different solvents. J. Phys. Chem. A 110, 7375–7385 (2006)

    Article  CAS  Google Scholar 

  3. Bregnhøj, M., Blazquez-Castro, A., Westberg, M., Breitenbach, T., Ogilby, P.R.: Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015)

    Article  Google Scholar 

  4. Frederiksen, P.K., Jørgensen, M., Ogilby, P.R.: Two-photon photosensitized production of singlet oxygen. J. Am. Chem. Soc. 123, 1215–1221 (2001)

    Article  CAS  Google Scholar 

  5. Poulsen, T.D., Frederiksen, P.K., Jørgensen, M., Mikkelsen, K.V., Ogilby, P.R.: Two-photon singlet oxygen sensitizers: Quantifying, modeling, and optimizing the two-photon absorption cross section. J. Phys. Chem. A 105, 11488–11495 (2001)

    Article  CAS  Google Scholar 

  6. Westberg, M., et al.: Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol., A 321, 297–308 (2016)

    Article  CAS  Google Scholar 

  7. Andersen, L.K., Ogilby, P.R.: A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: Monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev. Sci. Instrum. 73, 4313–4325 (2002)

    Article  CAS  Google Scholar 

  8. Bregnhøj, M., Ogilby, P.R.: Effect of solvent on the O2(a1Δg) → O2(b1Σ +g ) absorption coefficient. J. Phys. Chem. A 119, 9236–9243 (2015)

    Article  Google Scholar 

  9. Braiman, M.S., Xiao, Y.: Step-Scan Time-Resolved FT-IR Spectroscopy of Biopolymers. CRC Press (2005)

    Google Scholar 

  10. Griffiths, P., De Haseth, J.A.: Fourier Transform Infrared Spectrometry. Wiley (2007)

    Google Scholar 

  11. Rodig, C., Siebert, F.: Errors and artifacts in time-resolved step-scan FT-IR spectroscopy. Appl. Spectrosc. 53, 893–901 (1999)

    Article  CAS  Google Scholar 

  12. Horowitz, P., Hill, W., Robinson, I.: The Art of Electronics. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  13. Snook, R.D., Lowe, R.D.: Thermal lens spectrometry. A review. Analyst 120, 2051–2068 (1995)

    Article  CAS  Google Scholar 

  14. Holthoff, E.L., Pellegrino, P.M.: Sensing applications using photoacoustic spectroscopy. CRC Press, Boca Raton, FL (2012)

    Google Scholar 

  15. Petrov, V.V., Genina, E.A., Lapin, S.A.: Laser optoacoustics: main methods and principles-review. In: Saratov Fall Meeting 1998: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, International Society for Optics and Photonics (1999)

    Google Scholar 

  16. Lukasievicz, G.V., et al.: Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials. Appl. Spectrosc. 67, 1111–1116 (2013)

    Article  CAS  Google Scholar 

  17. Braslavsky, S.E., Heibel, G.E.: Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381–1410 (1992)

    Article  CAS  Google Scholar 

  18. Lai, H., Young, K.: Theory of the pulsed optoacoustic technique. J. Acoust. Soc. Am. 72, 2000 (1982)

    Article  Google Scholar 

  19. Ronis, D.: Theory of fluctuations in colloidal suspensions undergoing steady shear flow. Phys. Rev. A 29, 1453 (1984)

    Article  CAS  Google Scholar 

  20. Bialkowski, S.E.: Photothermal spectroscopy methods for chemical analysis. Wiley, New York (1996)

    Book  Google Scholar 

  21. Sigrist, M.W.: Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60, R83–R122 (1986)

    Article  CAS  Google Scholar 

  22. Arnbjerg, J., et al.: One-and two-photon photosensitized singlet oxygen production: characterization of aromatic ketones as sensitizer standards. J. Phys. Chem. A 111, 5756–5767 (2007)

    Article  CAS  Google Scholar 

  23. Patel, C., Tam, A.: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517–553 (1981)

    Article  CAS  Google Scholar 

  24. Rothberg, L.J., Simon, J.D., Bernstein, M., Peters, K.S.: Pulsed laser photoacoustic calorimetry of metastable species. J. Am. Chem. Soc. 105, 3464–3468 (1983)

    Article  CAS  Google Scholar 

  25. Rudzki, J.E., Goodman, J.L., Peters, K.S.: Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry. J. Am. Chem. Soc. 107, 7849–7854 (1985)

    Article  CAS  Google Scholar 

  26. dos Santos, R.M.B., Lagoa, A.L.C., Martinho Simões, J.A.: Photoacoustic calorimetry. An examination of a non-classical thermochemistry tool. J. Chem. Thermodyn. 31, 1483–1510 (1999)

    Article  Google Scholar 

  27. Toftegaard, R., et al.: Metal nanoparticle-enhanced radiative transitions: giving singlet oxygen emission a boost. Pure Appl. Chem. 83, 885–898 (2011)

    Article  CAS  Google Scholar 

  28. Langhammer, C., Kasemo, B., Zorić, I.: Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007)

    Article  Google Scholar 

  29. Evanoff, D.D., Chumanov, G.: Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957–13962 (2004)

    Article  CAS  Google Scholar 

  30. Raty, J.A., Peiponen, K.: Reflectance study of milk in the UV-visible range. Appl. Spectrosc. 53, 1123–1127 (1999)

    Article  CAS  Google Scholar 

  31. Jones, C. J.: d-and f-Block Chemistry. Royal Society of Chemistry (2001)

    Google Scholar 

  32. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer (2007)

    Google Scholar 

  33. Nonell, S., Gonzalez, M., Trull, F.R.: 1H-Phenalen-1-One-2-Sulfonic Acid-An extremely efficient singlet molecular-oxygen sensitizer for aqueous-media. Afinidad 50, 445–450 (1993)

    CAS  Google Scholar 

  34. Reid, D., Bonthrone, W.: Conjugated cyclic hydrocarbons. Part VIII. The benzo [cd] pyrenium cation: synthesis and reactivity. J. Chem. Soc., 5920–5926 (1965)

    Google Scholar 

  35. Gittins, D.I., Caruso, F.: Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004 (2001)

    Article  CAS  Google Scholar 

  36. Ali, M.R., Snyder, B., El-Sayed, M.A.: Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28, 9807–9815 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Bregnhøj .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bregnhøj, M. (2019). Instrumentation and Experimental Techniques. In: The Electronic Transitions of Molecular Oxygen. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03183-1_2

Download citation

Publish with us

Policies and ethics