Other Effects

  • Jiashi Yang
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 9)


In this chapter we discuss a few effects that are external to the quasistatic theory of electroelasticity developed in Chap.  1 which is valid through Chap.  6. These include the effects of heat conduction; mechanical and electrical dissipations due to viscosity, dielectric loss and semiconduction; nonlocal and gradients effects; as well as electromagnetic effects.


Thermal effect Dissipation Semiconduction Nonlocal effect Gradient effect 


  1. 1.
    H.F. Tiersten, On the nonlinear equations of thermoelectroelasticity. Int. J. Eng. Sci. 9, 587–604 (1971)CrossRefGoogle Scholar
  2. 2.
    H.F. Tiersten, On the influence of material objectivity on electroelastic dissipation in polarized ferroelectric ceramics. Math. Mech. Solids 1, 45–55 (1996)CrossRefGoogle Scholar
  3. 3.
    J.S. Yang, Nonlinear equations of thermoviscoelectroelasticity. Math. Mech. Solids 3, 113–124 (1998)CrossRefGoogle Scholar
  4. 4.
    R. D. Mindlin, On the equations of motion of piezoelectric crystals, in: Problems of Continuum Mechanics (N.I. Muskhelishvili 70th Birthday volume), 1961, pp. 282–290Google Scholar
  5. 5.
    R. Holland, E.P. EerNisse, Design of Resonant Piezoelectric Devices (MIT Press, Cambridge, MA, 1969)Google Scholar
  6. 6.
    R.F. Pierret, Semiconductor Fundamentals, 2nd edn. (Addison-Wesley, Reading, 1988)Google Scholar
  7. 7.
    A.R. Hutson, D.L. White, Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRefGoogle Scholar
  8. 8.
    C.L. Zhang, X.Y. Wang, W.Q. Chen, J.S. Yang, An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26, 025030 (2017)CrossRefGoogle Scholar
  9. 9.
    A.C. Eringen, B.S. Kim, Relation between non-local elasticity and lattice dynamics. Crystal Lattice Defects 7, 51–57 (1977)Google Scholar
  10. 10.
    A.C. Eringen, Theory of nonlocal piezoelectricity. J. Math. Phys. 25, 717–727 (1984)CrossRefGoogle Scholar
  11. 11.
    J.S. Yang, Thin film capacitance in case of a non-local polarization law. Int. J. Appl. Electromagn. Mech. 8, 307–314 (1997)Google Scholar
  12. 12.
    R.D. Mindlin, Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2, 217–282 (1972)CrossRefGoogle Scholar
  13. 13.
    R.D. Mindlin, Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)CrossRefGoogle Scholar
  14. 14.
    A. Askar, P.C.Y. Lee, A.S. Cakmak, Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys. Rev. B 1, 3525–3537 (1970)CrossRefGoogle Scholar
  15. 15.
    R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int. J. Solids Struct. 5, 1197–1208 (1969)CrossRefGoogle Scholar
  16. 16.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Oxford, 1984)Google Scholar
  17. 17.
    A.C. Eringen, G.A. Maugin, Electrodynamics of Continua, vol I (Springer-Verlag, New York, 1990)Google Scholar
  18. 18.
    X.M. Yang, Y.T. Hu, J.S. Yang, Electric field gradient effects in anti-plane problems of polarized ceramics. Int. J. Solids Struct. 41, 6801–6811 (2004)CrossRefGoogle Scholar
  19. 19.
    J.S. Yang, X.M. Yang, Electric field gradient effect and thin film capacitance. World J. Eng. 2, 41–45 (2004)Google Scholar
  20. 20.
    D.F. Nelson, M. Lax, Linear elasticity and piezoelectricity in pyroelectrics. Phys. Rev. B 13, 1785–1796 (1976)CrossRefGoogle Scholar
  21. 21.
    R.D. Mindlin, Electromagnetic radiation from a vibrating quartz plate. Int. J. Solids Struct. 9, 697–702 (1973)CrossRefGoogle Scholar
  22. 22.
    J.S. Yang, Bleustein-Gulyaev waves in piezoelectromagnetic materials. Int. J. Appl. Electromagn. Mech. 12, 235–240 (2000)CrossRefGoogle Scholar
  23. 23.
    J.L. Bleustein, A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations