Vibrations of Finite Bodies

  • Jiashi Yang
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 9)


In this chapter we study vibrations of finite piezoelectric bodies. In some cases, for example, thickness vibrations of unbounded plates, although the in-plane dimensions of the plates are infinite, what matters is the finite plate thickness. Sects. 5.2 and 5.7 are on antiplane problems of polarized ceramics for which the notation in Sect. 2.9 is followed. The solutions in Sects. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 are exact. Those in Sects. 5.8, 5.9, and 5.10 are approximate.


Thickness stretch Thickness shear Plate Rod Mass sensitivity Orthogonality 


  1. 1.
    H.F. Tiersten, Thickness vibrations of piezoelectric plates. J. Acoust. Soc. Am. 35, 53–58 (1963)CrossRefGoogle Scholar
  2. 2.
    H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969)Google Scholar
  3. 3.
    A.H. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE Standard on Piezoelectricity (IEEE, New York, 1988)Google Scholar
  4. 4.
    B. Liu, Q. Jiang, J.S. Yang, Fluid-induced frequency shift in a piezoelectric plate driven by lateral electric fields. Int. J. Appl. Electromagn. Mech. 34, 171–180 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys. 155, 206–222 (1959)CrossRefGoogle Scholar
  6. 6.
    N.T. Adelman, Y. Stavsky, Radial vibrations of axially polarized piezoelectric ceramic cylinders. J. Acoust. Soc. Am. 57, 356–360 (1975)CrossRefGoogle Scholar
  7. 7.
    J.S. Yang, R.C. Batra, Free vibrations of a piezoelectric body. J. Elast. 34, 239–254 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations