Nonlinear Theory of Electroelasticity

  • Jiashi Yang
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 9)


In this chapter we develop the nonlinear theory of electroelasticity for large deformations and strong electric fields. Readers who are only interested in the linear theory of piezoelectricity may skip this chapter and begin with Chap.  2, Sect.  2.2. This chapter uses the two-point Cartesian tensor notation, the summation convention for repeated tensor indices, and the convention that a comma followed by an index denotes partial differentiation with respect to the coordinate associated with the index.


Nonlinearity Balance laws Constitutive relations Jump conditions Maxwell stress Piola-Kirchhoff stress 


  1. 1.
    I.S. Sokolnikoff, Tensor Analysis, 2nd edn. (Wiley, New York, 1964)Google Scholar
  2. 2.
    H.F. Tiersten, Nonlinear electroelastic equations cubic in the small field variables. J. Acoust. Soc. Am. 57, 660–666 (1975)CrossRefGoogle Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford, 1984)Google Scholar
  4. 4.
    H.F. Tiersten, On the nonlinear equations of thermoelectroelasticity. Int. J. Eng. Sci. 9, 587–604 (1971)CrossRefGoogle Scholar
  5. 5.
    H.G. de Lorenzi, H.F. Tiersten, On the interaction of the electromagnetic field with heat conducting deformable semiconductors. J. Math. Phys. 16, 938–957 (1975)CrossRefGoogle Scholar
  6. 6.
    J.S. Yang, Differential derivation of the momentum and energy equations in electroelasticity. Acta Mechanica Solida Sinica 30, 21–26 (2017)CrossRefGoogle Scholar
  7. 7.
    A.C. Eringen, G.A. Maugin, Electrodynamics of Continua, vol I (Springer, New York, 1990)Google Scholar
  8. 8.
    D.F. Nelson, Electric, Optic, and Acoustic Interactions in Dielectrics (Wiley, New York, 1979)Google Scholar
  9. 9.
    J.S. Yang, On the derivation of electric body force, couple and power in an electroelastic body. Acta Mechanica Solida Sinica 28, 613–617 (2015)CrossRefGoogle Scholar
  10. 10.
    A.C. Eringen, Mechanics of Continua (Robert E. Krieger, Huntington, 1980)Google Scholar
  11. 11.
    H.F. Tiersten, A Development of the Equations of Electromagnetism in Material Continua (Springer, New York, 1990)CrossRefGoogle Scholar
  12. 12.
    J.C. Baumhauer, H.F. Tiersten, Nonlinear electroelastic equations for small fields superposed on a bias. J. Acoust. Soc. Am. 54, 1017–1034 (1973)CrossRefGoogle Scholar
  13. 13.
    R.A. Toupin, The elastic dielectric. J. Rational Mech. Anal. 5, 849–915 (1956)Google Scholar
  14. 14.
    F. Bampi, A. Morro, A Lagrangian density for the dynamics of elastic dielectrics. Int. J. Non-Linear Mech. 18, 441–447 (1983)CrossRefGoogle Scholar
  15. 15.
    G.A. Maugin, M. Epstein, The electroelastic energy-momentum tensor. Proc. R. Soc. Lond. A 433, 299–312 (1991)CrossRefGoogle Scholar
  16. 16.
    J.S. Yang, R.C. Batra, Mixed variational principles in non-linear electroelasticity. Int. J. Non-Linear Mech. 30, 719–725 (1995)CrossRefGoogle Scholar
  17. 17.
    G.F. Smith, M.M. Smith, R.S. Rivlin, Integrity bases for a symmetric tensor and a vector-the crystal classes. Arch. Rat. Mech. Anal. 12, 93–133 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations