Skip to main content

Performance Analysis of Compression Techniques for Multimedia Data

  • Chapter
  • First Online:
Smart Techniques for a Smarter Planet

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 374))

Abstract

Multimedia compression plays an important role in multimedia communication. In this paper, the problems of compression, quality degradation video and image are discussed. Block matching algorithms compress the image block by block, and it also operates in a temporal manner. Proposed method is a combination of spatio-temporal compression method.It is the combination of intensity and motion estimation. The proposed technique’s compression gains of about90 percent with respective to static JPEG-LS, as it is applied a frame basis. it achieves a good computation complexity and reduces it. An experimental result shows the better performance than existing methods. Due to spatio-temporal combination method quality of degradation is improved compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai, R., Akyildiz, I.F.: A spatial correlation model for visual information in wireless multimedia sensor networks. IEEE Trans. Multimed. 11(6), 1148–1159 (2009)

    Article  Google Scholar 

  2. Brunello, D., Calvagno, G., Mian, G.A., Rinaldo, R.: Lossless compression of video using temporal information. IEEE Trans. Image Process. 12(2), 132–139 (2003)

    Article  MathSciNet  Google Scholar 

  3. Callico, G.M., Lopez, S., Sosa, O., Lopez, J.F., Sarmiento, R.: Analysis of fast block matching motion estimation algorithms for video super-resolution systems. IEEE Trans. Consumer Electron. I 54(3), 1430–1438 (2008)

    Article  Google Scholar 

  4. Chang, N.B., Liu, M.: Optimal competitive algorithms for opportunistic spectrum access. IEEE J. Sel. Areas Commun. 26(7), 1183–1192 (2008)

    Article  Google Scholar 

  5. Choi, C., Jeong, J.: New sorting-based partial distortion elimination algorithm for fast optimal motion estimation. IEEE Trans. Consumer Electron. 55(4), 2335–2340 (2009)

    Article  Google Scholar 

  6. Chung, K.-L., Chang, L.-C.: A new predictive search area approach for fast block motion estimation. IEEE Trans. Image Process. 12(6), 648–652 (2003)

    Article  Google Scholar 

  7. Daribo, I., Florencio, D., Cheung, G.: Arbitrarily shaped motion prediction for depth video compression using arithmetic edge coding. IEEE Trans. Image Process. 23(11), 4696–4708 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gleich, D., Planinšič, P., Gergič, B.: Progressive space frequency quantization for sar data compression. IEEE Trans. Geosci. Remote Sens. 40(1), 3–10 (2002)

    Article  Google Scholar 

  9. Kim, J., Kyung, C.-M.: A lossless embedded compression using significant bit truncation for hd video coding. IEEE Trans. Circuits Syst. Video Technol. 20(6), 848–860 (2010)

    Article  Google Scholar 

  10. Kwok, S.-H., Siu, W.-C., Constantinides, A.G.: Adaptive temporal decimation algorithm with dynamic time window. IEEE Trans. Circuits Syst. Video Technol. 8(1), 104–111 (1998)

    Article  Google Scholar 

  11. Lai, Y.-K., Chen, L.-F., Huang, S.-Y.: Hybrid parallel motion estimation architecture based on fast top-winners search algorithm. IEEE Trans. Consumer Electron. 56(3), 1837–1842 (2010)

    Article  Google Scholar 

  12. Li, H., Li, Z., Wen, C.: Fast mode decision algorithm for inter-frame coding in fully scalable video coding. IEEE Trans. Circuits Syst. Video Technol. 16(7), 889–895 (2006)

    Article  Google Scholar 

  13. Lin, W., Sun, M.-T., Li, H., Chen, Z., Li, W., Zhou, B.: Macroblock classification method for video applications involving motions. IEEE Trans. Broadcast. 58(1), 34–46 (2012)

    Article  Google Scholar 

  14. Lin, Y.-H., Wu, J.-L.: A depth information based fast mode decision algorithm for color plus depth-map 3D videos. IEEE Trans. Broadcast. 57(2), 542–550 (2011)

    Article  Google Scholar 

  15. Liu, B., Zaccarin, A.: New fast algorithms for the estimation of block motion vectors. IEEE Trans. Circuits Syst. Video Technol. 3(2), 148–157 (1993)

    Article  Google Scholar 

  16. Luo, J., Ahmad, I., Liang, Y., Swaminathan, V.: Motion estimation for content adaptive video compression. IEEE Trans. Circuits Syst. Video Technol. 18(7), 900–909 (2008)

    Article  Google Scholar 

  17. Ma, Z., Wang, W., Xu, M., Yu, H.: Advanced screen content coding using color table and index map. IEEE Trans. Image Process. 23(10), 4399–4412 (2014)

    Article  MathSciNet  Google Scholar 

  18. Moon, Y.H., Yoon, K.S., Park, S.-T., Shin, I.H.: A new fast encoding algorithm based on an efficient motion estimation process for the scalable video coding standard. IEEE Trans. Multimed. 15(3), 477–484 (2013)

    Article  Google Scholar 

  19. Moshe, Y., Hel-Or, H.: Video block motion estimation based on gray-code kernels. IEEE Trans. Image Process. 18(10), 2243–2254 (2009)

    Article  MathSciNet  Google Scholar 

  20. Pudlewski, S., Cen, N., Guan, Z., Melodia, T.: Video transmission over lossy wireless networks: a cross-layer perspective. IEEE J. Sel. Top. Signal Process. 9(1), 6–21 (2015)

    Article  Google Scholar 

  21. Pudlewski, S., Melodia, T.: Compressive video streaming: design and rate-energy-distortion analysis. IEEE Trans. Multimed. 15(8), 2072–2086 (2013)

    Article  Google Scholar 

  22. Shi, Z., Fernando, W., Kondoz, A.: Adaptive direction search algorithms based on motion correlation for block motion estimation. IEEE Trans. Consumer Electron. 57(3), 1354–1361 (2011)

    Article  Google Scholar 

  23. Vo, D.T., Solé, J., Yin, P., Gomila, C., Nguyen, T.Q.: Selective data pruning-based compression using high-order edge-directed interpolation. IEEE Trans. Image Process. 19(2), 399–409 (2010)

    Article  MathSciNet  Google Scholar 

  24. Yang, K.H., et al.: A contex-based predictive coder for lossless and near-lossless compression of video. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 144–147 (2000)

    Google Scholar 

  25. Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhu, S., Ma, K.-K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)

    Article  Google Scholar 

  27. Budhewar, A.S., Thool, R.C.: Improving performance analysis of multimedia wireless sensor network: a survey. In: IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1441–1448 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama S. Budhewar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budhewar, A.S., Doye, D.D. (2019). Performance Analysis of Compression Techniques for Multimedia Data. In: Mishra, M., Mishra, B., Patel, Y., Misra, R. (eds) Smart Techniques for a Smarter Planet. Studies in Fuzziness and Soft Computing, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-030-03131-2_12

Download citation

Publish with us

Policies and ethics