Skip to main content

Robust Coalition Structure Generation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11224))

Abstract

How to form effective coalitions is an important issue in multi-agent systems. Coalition Structure Generation (\(\mathsf {CSG}\)) involves partitioning a set of agents into coalitions so that the social surplus (i.e. the sum of the rewards obtained by each coalition) is maximized. In many cases, one is interested in computing a partition of the set of agents which maximizes the social surplus, but is robust as well, which means that it is not required to recompute new coalitions if some agents break down. In this paper, the focus is laid on the Robust Coalition Structure Generation (\(\mathsf {RCSG}\)) problem. A formal framework is defined and some decision and optimization problems for \(\mathsf {RCSG}\) are pointed out. The computational complexity of \(\mathsf {RCSG}\) is then identified. An algorithm for \(\mathsf {RCSG}\) (called \(\mathsf {AmorCSG}\)) is presented and evaluated on a number of benchmarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the property of monotonicity differs from the super-additivity which requires that for all coalitions C, \(C'\), it holds \(v(C) + v(C') \le v(C \cup C')\) and is stronger than monotonicity.

References

  1. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)

    Article  MathSciNet  Google Scholar 

  2. Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core based on synergies among coalitions. Artif. Intell. 170(6–7), 607–619 (2006)

    Article  MathSciNet  Google Scholar 

  3. Dang, V., Dash, R., Rogers, A., Jennings, N.: Overlapping coalition formation for efficient data fusion in multi-sensor networks. In: AAAI, pp. 635–640 (2006)

    Google Scholar 

  4. Dasgupta, P., Cheng, K.: Robust multi-robot team formations using weighted voting games. In: Martinoli, A. (ed.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 373–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_27

    Chapter  Google Scholar 

  5. Dinar, A., Moretti, S., Patrone, F., Zara, S.: Application of stochastic cooperative games in water resources. In: Goetz, R.U., Berga, D. (eds.) Frontiers in Water Resource Economics. NRMP, vol. 29, pp. 1–20. Springer, Boston (2006). https://doi.org/10.1007/0-387-30056-2_1

    Chapter  Google Scholar 

  6. Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation scheme for coalitional games. In: ACM EC, pp. 193–202 (2005)

    Google Scholar 

  7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  8. Larson, K., Sandholm, T.: Anytime coalition structure generation: an average case study. J. Exp. Theor. Artif. Intell. 12(1), 23–42 (2000)

    Article  Google Scholar 

  9. Lesser, V., Tambe, M., Ortiz, C. (eds.): Distributed Sensor Networks: A Multiagent Perspective. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  10. Michalak, T., Rahwan, T., Elkind, E., Wooldridge, M., Jennings, N.: A hybrid exact algorithm for complete set partitioning. J. Artif. Intell. 230, 14–50 (2016)

    Article  MathSciNet  Google Scholar 

  11. Nair, R., Tambe, M.: Hybrid BDI-POMDP framework for multiagent teaming. J. Artif. Intell. Res. 23, 367–420 (2005)

    Article  Google Scholar 

  12. Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., Yokoo, M.: Coalition structure generation utilizing compact characteristic function representations. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 623–638. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_49

    Chapter  Google Scholar 

  13. Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., Marquis, P.: How to form a task-oriented robust team. In: AAMAS, pp. 395–403 (2015)

    Google Scholar 

  14. Rahwan, T., Jennings, N.: Coalition structure generation: dynamic programming meets anytime optimization. In: AAAI, pp. 156–161 (2008)

    Google Scholar 

  15. Rahwan, T., Michalak, T., Jennings, N.: A hybrid algorithm for coalition structure generation. In: AAAI, pp. 1443–1449 (2012)

    Google Scholar 

  16. Rahwan, T., Ramchurn, S., Dang, V., Giovannucci, A., Jennings, N.: Anytime optimal coalition structure generation. In: AAAI, pp. 1184–1190 (2007)

    Google Scholar 

  17. Rahwan, T., Ramchurn, S., Jennings, N., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. J. Artif. Intell. Res. (JAIR) 34, 521–567 (2009)

    Article  MathSciNet  Google Scholar 

  18. Sandholm, T.: An implementation of the contract net protocol based on marginal cost calculations. In: 11th National Conference on Artificial Intelligence, pp. 295–308 (1993)

    Google Scholar 

  19. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure generation with worst case guarantees. Artif. Intell. 111(1–2), 209–238 (1999)

    Article  MathSciNet  Google Scholar 

  20. Sandholm, T., Lesser, V.R.: Coalitions among computationally bounded agents. Artif. Intell. 94(1–2), 99–137 (1997)

    Article  MathSciNet  Google Scholar 

  21. Service, T., Adams, J.: Approximate coalition structure generation. In: AAAI, pp. 854–859 (2010)

    Google Scholar 

  22. Vidal, J.: The effects of co-operation on multiagent search in task-oriented domains. J. Exp. Theor. Artif. Intell. 16(1), 5–18 (2004)

    Article  Google Scholar 

  23. Yeh, D.: A dynamic programming approach to the complete set partitioning problem. BIT Comput. Sci. Numer. Math. 26(4), 467–474 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tenda Okimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okimoto, T., Schwind, N., Demirović, E., Inoue, K., Marquis, P. (2018). Robust Coalition Structure Generation. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science(), vol 11224. Springer, Cham. https://doi.org/10.1007/978-3-030-03098-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03098-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03097-1

  • Online ISBN: 978-3-030-03098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics