Skip to main content

Solving Multiagent Constraint Optimization Problems on the Constraint Composite Graph

  • Conference paper
  • First Online:
PRIMA 2018: Principles and Practice of Multi-Agent Systems (PRIMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11224))

Abstract

We introduce the Constraint Composite Graph (CCG) for Distributed Constraint Optimization Problems (DCOPs), a popular paradigm used for the description and resolution of cooperative multi-agent problems. The CCG is a novel graphical representation of DCOPs on which agents can coordinate their assignments to solve the distributed problem suboptimally. By leveraging this representation, agents are able to reduce the size of the problem. We propose a novel variant of Max-Sum—a popular DCOP incomplete algorithm—called CCG-Max-Sum, which is applied to CCGs, and demonstrate its efficiency and effectiveness on DCOP benchmarks based on several network topologies.

The research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1724392, 1409987, and 1817189. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies or the U.S. government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Its runtime is comparable to that of one iteration of CCG-Max-Sum, which in turn takes 0.035 s on average in our experiments.

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Chlebík, M., Chlebíková, J.: Crown reductions for the minimum weighted vertex cover problem. Discret. Appl. Math. 156(3), 292–312 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cohen, L., Zivan, R.: Max-sum revisited: the real power of damping. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 1505–1507. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4_8

    Chapter  Google Scholar 

  4. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)

    Article  Google Scholar 

  5. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the Max-sum algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)

    Google Scholar 

  6. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)

    Article  MathSciNet  Google Scholar 

  7. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agents decomposition for DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2480–2486 (2016)

    Google Scholar 

  8. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart homes. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

    Google Scholar 

  9. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to the economic dispatch with demand response. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

    Google Scholar 

  10. Hoang, K.D., Fioretto, F., Yeoh, W., Pontelli, E., Zivan, R.: A large neighboring search schema for multi-agent optimization. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 688–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_44

    Chapter  Google Scholar 

  11. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 133–140 (2010)

    Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  13. Kumar, T.K.S.: A framework for hybrid tractability results in Boolean weighted constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 282–297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_19

    Chapter  Google Scholar 

  14. Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)

    Google Scholar 

  15. Kumar, T.K.S.: Kernelization, generation of bounds, and the scope of incremental computation for weighted constraint satisfaction problems. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2016)

    Google Scholar 

  16. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a graphical game-based approach. In: Proceedings of the Conference on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)

    Google Scholar 

  17. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)

    Article  MathSciNet  Google Scholar 

  18. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)

    Article  MathSciNet  Google Scholar 

  19. Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1446–1451 (2007)

    Google Scholar 

  20. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)

    Google Scholar 

  21. Petcu, A., Faltings, B., Mailler, R.: PC-DPOP: a new partial centralization algorithm for distributed optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 167–172 (2007)

    Google Scholar 

  22. Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 468–474 (2016)

    Google Scholar 

  23. Silva, G., Reis, L., Terceiro, A., Meirelles, P., Kon, F.: Implementing federated social networking: report from the trenches. In: Proceedings of the International Symposium on Open Collaboration (OpenSym), pp. 8:1–8:10 (2017)

    Google Scholar 

  24. Vinyals, M., Rodríguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. J. Auton. Agents Multi-Agent Syst. 22(3), 439–464 (2011)

    Article  Google Scholar 

  25. Xu, H., Satish Kumar, T.K., Koenig, S.: The Nemhauser-Trotter reduction and lifted message passing for the weighted CSP. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 387–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_31

    Chapter  Google Scholar 

  26. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

    Article  Google Scholar 

  27. Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–87 (2005)

    Article  MathSciNet  Google Scholar 

  28. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artif. Intell. 212, 1–26 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zivan, R., Parash, T., Naveh, Y.: Applying max-sum to asymmetric distributed constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 432–439 (2015)

    Google Scholar 

  30. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. J. Auton. Agents Multi-Agent Syst. 29(3), 495–536 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Fioretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fioretto, F., Xu, H., Koenig, S., Kumar, T.K.S. (2018). Solving Multiagent Constraint Optimization Problems on the Constraint Composite Graph. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science(), vol 11224. Springer, Cham. https://doi.org/10.1007/978-3-030-03098-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03098-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03097-1

  • Online ISBN: 978-3-030-03098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics