Skip to main content

Progressive Inference Algorithms for Probabilistic Argumentation

  • Conference paper
  • First Online:
PRIMA 2018: Principles and Practice of Multi-Agent Systems (PRIMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11224))

  • 1431 Accesses

Abstract

We develop a progressive inference approach for Probabilistic Argumentation, and then implement obtained algorithms for three standard semantics: the credulous, the ideal, and the skeptical preferred semantics. Like their exact counterparts, these algorithms can be destined to compute the exact answers, however while doing so, they can output immediate answers increasingly close to the exact ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PABA and ABA are formally defined in Sect. 2.

  2. 2.

    Shorthands for \({{\varvec{b}}}urglary, {{\varvec{e}}}arthquake, {{\varvec{p1}}}\_alarm, {{\varvec{p2}}}\_alarm, {{\varvec{p3}}}\_alarm\) respectively.

  3. 3.

    The dependency of burglaries on earthquakes as well as parameter values are made up for the sake of illustrations.

  4. 4.

    credulous/grounded/ideal semantics.

  5. 5.

    For convenience, define \(head(r) = l_0\) and \(body(r) = \{l_1,\dots l_n\}\).

  6. 6.

    Note that any admissible set of assumptions is a subset of some preferred set of assumptions; and any preferred set of assumptions is also admissible.

  7. 7.

    An ABA \({\mathcal {F}}\) is finitary if for each node in the dependency graph of \({\mathcal {F}}\), there is a finite number of nodes reachable from it; and positively acyclic if in the dependency graph of \({\mathcal {F}}\), there is no infinite directed path consisting solely non-assumption nodes.

  8. 8.

    A probabilistic assumption is an element of \({\mathcal {A}}_p \cup \lnot {\mathcal {A}}_p\). A proposition not in \({\mathcal {A}}_p \cup \lnot {\mathcal {A}}_p\) is called a non-probabilistic proposition.

  9. 9.

    G is a directed acyclic graph over \(\mathcal X = \{X_1, \dots , X_m\}\) and \(\varTheta \) is a set of conditional probability tables (CPTs), one CPT \(\varTheta _{X\mid par(X)}\) for each \(X \in \mathcal X\).

  10. 10.

    Note that \({\mathcal {F}}_{s'}\) is obtained from \({\mathcal {F}}\) by adding a set of facts \(\{p \leftarrow \mid p \in s'\}\).

  11. 11.

    We use Problog [8] syntax.

  12. 12.

    We have developed sound translation schemes for the ideal semantics and skeptical preferred semantics. However they can not be presented here due to lack of space.

References

  1. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(1), 63–101 (1997)

    Article  MathSciNet  Google Scholar 

  2. Doder, D., Woltran, S.: Probabilistic argumentation frameworks – a logical approach. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 134–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_12

    Chapter  Google Scholar 

  3. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  4. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal skeptical argumentation. Artif. Intell. 171(10–15), 642–674 (2007)

    Article  Google Scholar 

  6. Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. COMMA 2010, 171–182 (2010)

    Google Scholar 

  7. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation frameworks. ACM Trans. Comput. Logic 16(3), 22:1–22:39 (2015)

    Article  MathSciNet  Google Scholar 

  8. Fierens, D., et al.: Inference and learning in probabilistic logic programsx using weighted boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015)

    Article  MathSciNet  Google Scholar 

  9. Gabbay, D.M., Rodrigues, O.: Probabilistic argumentation. An equational approach. CoRR (2015)

    Google Scholar 

  10. Hung, N.D.: The distribution semantics of extended argumentation. In: Chen, J., Theeramunkong, T., Supnithi, T., Tang, X. (eds.) KSS 2017. CCIS, vol. 780, pp. 197–211. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6989-5_17

    Chapter  Google Scholar 

  11. Hung, N.D.: A generalization of probabilistic argumentation with Dempster-Shafer Theory. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 155–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_12

    Chapter  Google Scholar 

  12. Hung, N.D.: Inference and learning in probabilistic argumentation. In: Phon-Amnuaisuk, S., Ang, S.-P., Lee, S.-Y. (eds.) MIWAI 2017. LNCS (LNAI), vol. 10607, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69456-6_1

    Chapter  Google Scholar 

  13. Hung, N.D.: Inference procedures and engine for probabilistic argumentation. Int. J. Approx. Reason. 90, 163–191 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approx. Reason. 54(1), 47–81 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hunter, A., Thimm, M.: Probabilistic reasoning with abstract argumentation frameworks. J. Artif. Intell. Res. 59, 565–611 (2017)

    Article  MathSciNet  Google Scholar 

  16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    Google Scholar 

  17. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_1

    Chapter  Google Scholar 

  18. Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_8

    Chapter  Google Scholar 

  19. Rienstra, T.: Towards a probabilistic dung-style argumentation system. In: AT, pp. 138–152. CEUR (2012)

    Google Scholar 

  20. Sato, T., Kameya, Y.: New advances in logic-based probabilistic modeling by PRISM. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 118–155. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_5

    Chapter  Google Scholar 

  21. Thang, P.M.: Dialectical proof procedures for probabilistic abstract argumentation. In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA 2016. LNCS (LNAI), vol. 9862, pp. 397–406. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44832-9_27

    Chapter  Google Scholar 

  22. Thimm, M.: A probabilistic semantics for abstract argumentation. In: ECAI, vol. 242, pp. 750–755. ISO Press (2012)

    Google Scholar 

  23. Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1), 89–117 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is supported by SIIT Young Researcher Grant, contract no SIIT 2017-YRG-NH02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Duy Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hung, N.D. (2018). Progressive Inference Algorithms for Probabilistic Argumentation. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science(), vol 11224. Springer, Cham. https://doi.org/10.1007/978-3-030-03098-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03098-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03097-1

  • Online ISBN: 978-3-030-03098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics