Skip to main content

On Existence, Mixtures, Computation and Efficiency in Multi-objective Games

  • Conference paper
  • First Online:
PRIMA 2018: Principles and Practice of Multi-Agent Systems (PRIMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11224))

Abstract

In a multi-objective game, each individual’s payoff is a vector-valued function of everyone’s actions. Under such vectorial payoffs, Pareto-efficiency is used to formulate each individual’s best-response condition, inducing Pareto-Nash equilibria as the fundamental solution concept. In this work, we follow a classical game-theoretic agenda to study equilibria. Firstly, we show in several ways that numerous pure-strategy Pareto-Nash equilibria exist. Secondly, we propose a more consistent extension to mixed-strategy equilibria. Thirdly, we introduce a measurement of the efficiency of multiple objectives games, which purpose is to keep the information on each objective: the multi-objective coordination ratio. Finally, we provide algorithms that compute Pareto-Nash equilibria and that compute or approximate the multi-objective coordination ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tobacco consumers are free to value and choose cigarettes how it pleases them. However, is value the same when they inhale, as when they die suffocating?

  2. 2.

    It is a backtrack from the subjective theory of value, which typically aggregates values on each objective/commodity into a single scalar by using an utility function.

  3. 3.

    All the proofs are in the long paper on arxiv.

  4. 4.

    In the single-objective case, Pareto-Nash and Nash equilibria coincide.

  5. 5.

    In a finite multi-objective game, sets N, \(\{A^{i}\}_{i\in N}\) and \({\mathcal {D}}\) are finite.

  6. 6.

    To enumerate the number of ways to distribute number n of symmetric agents into \(\alpha \) parts, one enumerates the ways to choose \(\alpha -1\) “separators” in \(n+\alpha -1\) elements.

References

  1. Blackwell, D., et al.: An analog of the minimax theorem for vector payoffs. Pac. J. Math. 6(1), 1–8 (1956)

    Article  MathSciNet  Google Scholar 

  2. Borm, P., Tijs, S., van den Aarssen, J.: Pareto equilibria in multiobjective games. Methods Oper. Res. 60, 303–312 (1988)

    MathSciNet  Google Scholar 

  3. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 67–73. ACM (2005)

    Google Scholar 

  4. Conover, C.: Is Smoking Irrational? Frobes/Healthcare, Fiscal, And Tax (2014)

    Google Scholar 

  5. Corley, H.: Games with vector payoffs. J. Optim. Theory an Appl. 47(4), 491–498 (1985)

    Article  MathSciNet  Google Scholar 

  6. Daskalakis, C., Papadimitriou, C.: Computing pure Nash equilibria in graphical games via Markov random fields. In: ACM-EC, pp. 91–99 (2006)

    Google Scholar 

  7. Dresher, M.: Probability of a pure equilibrium point in n-person games. J. Combin. Theory 8(1), 134–145 (1970)

    Article  MathSciNet  Google Scholar 

  8. Dubus, J.P., Gonzales, C., Perny, P.: Multiobjective optimization using GAI models. In: IJCAI, pp. 1902–1907 (2009)

    Google Scholar 

  9. Goldberg, K., Goldman, A., Newman, M.: The probability of an equilibrium point. J. Res. Nat. Bureau Stand. B. Math. Sci. 72(2), 93–101 (1968)

    Article  MathSciNet  Google Scholar 

  10. Gonzales, C., Perny, P., Dubus, J.P.: Decision making with multiple objectives using GAI networks. Artif. Intell. 175(7), 1153–1179 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games. J. Artif. Intell. Res. 24, 357–406 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jiang, A.X., Leyton-Brown, K.: Computing pure Nash equilibria in symmetric action graph games. In: AAAI, vol. 1, pp. 79-85 (2007)

    Google Scholar 

  13. Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 253–260. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  14. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38

    Chapter  Google Scholar 

  15. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  Google Scholar 

  16. Morgan, J.: Approximations and well-posedness in multicriteria games. Ann. Oper. Res. 137(1), 257–268 (2005)

    Article  MathSciNet  Google Scholar 

  17. Nash, J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36(1), 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  18. Papadimitriou, C.: The complexity of finding Nash equilibria. Algorithmic Game Theory 2, 30 (2007)

    Google Scholar 

  19. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)

    Google Scholar 

  20. Patrone, F., Pusillo, L., Tijs, S.: Multicriteria games and potentials. Top 15(1), 138–145 (2007)

    Article  MathSciNet  Google Scholar 

  21. Rinott, Y., Scarsini, M.: On the number of pure strategy Nash equilibria in random games. Games Econ. Behav. 33(2), 274–293 (2000)

    Article  MathSciNet  Google Scholar 

  22. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)

    Article  MathSciNet  Google Scholar 

  23. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 513–522. ACM (2009)

    Google Scholar 

  24. Shapley, L.S.: Equilibrium points in games with vector payoffs. Naval Res. Logist. Q. 6(1), 57–61 (1959)

    Article  MathSciNet  Google Scholar 

  25. Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955)

    Article  Google Scholar 

  26. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. Edwin Cannan’s annotated edition (1776)

    Google Scholar 

  27. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    Google Scholar 

  28. Voorneveld, M.: Potential games and interactive decisions with multiple criteria. Center for Economic Research, Tilburg University (1999)

    Google Scholar 

  29. Wang, S.: Existence of a Pareto equilibrium. J. Optim. Theory Appl. 79(2), 373–384 (1993)

    Article  MathSciNet  Google Scholar 

  30. Wierzbicki, A.P.: Multiple criteria games - theory and applications. J. Syst. Eng. Electr. 6(2), 65–81 (1995)

    Google Scholar 

  31. World-Health-Organization: WHO report on the global tobacco epidemic (2011)

    Google Scholar 

  32. Zeleny, M.: Games with multiple payoffs. Int. J. Game Theory 4(4), 179–191 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anisse Ismaili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismaili, A. (2018). On Existence, Mixtures, Computation and Efficiency in Multi-objective Games. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science(), vol 11224. Springer, Cham. https://doi.org/10.1007/978-3-030-03098-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03098-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03097-1

  • Online ISBN: 978-3-030-03098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics