Skip to main content

Muscle MRI as an Endpoint in Clinical Trials

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

In the last decade, there has been substantial progress in the genetic characterization and classification of inherited muscle disorders. In addition to clinical assessment, clinical neurophysiology, and the diagnostic gold standard of histopathology including immunohistochemistry, muscle imaging, and particularly magnetic resonance imaging (MRI), has increasingly been used in the diagnostic work-up of inherited muscle disease. Novel quantitative muscle MRI techniques have been developed in order to characterize and quantify the severity and pattern of muscle involvement in clinical routine as well as in therapeutic trials. This chapter provides a comprehensive overview of current MRI techniques in inherited muscle diseases with special emphasis on the use of quantitative muscle MRI in clinical therapeutic trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460

    Article  Google Scholar 

  2. Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M (2016) Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 23:688–703

    Article  Google Scholar 

  3. Wattjes MP, Fischer D (2013) Neuromuscular imaging. Springer, New York

    Book  Google Scholar 

  4. Quijano-Roy S, Avila-Smirnow D, Carlier RY (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22(Suppl 2):S68–S84

    Article  Google Scholar 

  5. Kornblum C, Lutterbey G, Bogdanow M et al (2006) Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 253:753–761

    Article  Google Scholar 

  6. Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 40:251–268

    Article  Google Scholar 

  7. Janiczek RL, Gambarota G, Sinclair CD et al (2011) Simultaneous T(2) and lipid quantitation using IDEAL-CPMG. Magn Reson Med 66:1293–1302

    Article  Google Scholar 

  8. Quijano-Roy S, Carlier RY, Fischer D (2011) Muscle imaging in congenital myopathies. Semin Pediatr Neurol 18:221–229

    Article  Google Scholar 

  9. Hankiewicz K, Carlier RY, Lazaro L et al (2015) Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve 52:728–735

    Article  CAS  Google Scholar 

  10. Diaz-Manera J, Alejaldre A, Gonzalez L et al (2016) Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes. Neuromuscul Disord 26:33–40

    Article  Google Scholar 

  11. Gomez-Andres D, Dabaj I, Mompoint D et al (2016) Pediatric laminopathies: Whole-body magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve 54:192–202

    Article  Google Scholar 

  12. Gerevini S, Scarlato M, Maggi L et al (2016) Muscle MRI findings in facioscapulohumeral muscular dystrophy. Eur Radiol 26:693–705

    Article  Google Scholar 

  13. Tasca G, Monforte M, Ottaviani P et al (2016) Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials. Ann Neurol 79(5):854–864

    Article  Google Scholar 

  14. Finlayson S, Morrow JM, Rodriguez Cruz PM et al (2016) Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle Nerve 54:211–219

    Article  Google Scholar 

  15. Kesper K, Kornblum C, Reimann J, Lutterbey G, Schroder R, Wattjes MP (2009) Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 120:111–118

    Article  CAS  Google Scholar 

  16. Morrow JM, Sinclair CD, Fischmann A et al (2014) Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 24:1610–1620

    Article  Google Scholar 

  17. Fischmann A, Morrow JM, Sinclair CD et al (2013) Improved anatomical reproducibility in quantitative lower-limb muscle MRI. J Magn Reson Imaging 39(4):1033–1038

    Article  Google Scholar 

  18. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  Google Scholar 

  19. Peterson P, Romu T, Brorson H, Dahlqvist Leinhard O, Mansson S (2016) Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. J Magn Reson Imaging 43:203–212

    Article  Google Scholar 

  20. Hooijmans MT, Damon BM, Froeling M et al (2015) Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed 28:1589–1597

    Article  CAS  Google Scholar 

  21. Wokke BH, van den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE (2015) T2 relaxation times are increased in skeletal muscle of DMD but not BMD patients. Muscle Nerve 53(1):38–43

    Article  Google Scholar 

  22. Weber MA, Nagel AM, Marschar AM et al (2016) 7-T (35)Cl and (23)Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology 281:326

    Article  Google Scholar 

  23. Kornblum C, Lutterbey GG, Czermin B et al (2010) Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand 121:131–135

    Article  CAS  Google Scholar 

  24. Antoni G, Lubberink M, Estrada S et al (2013) In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 54:213–220

    Article  CAS  Google Scholar 

  25. Maetzler W, Reimold M, Schittenhelm J et al (2011) Increased [11C]PIB-PET levels in inclusion body myositis are indicative of amyloid beta deposition. J Neurol Neurosurg Psychiatry 82:1060–1062

    Article  Google Scholar 

  26. Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77

    Article  Google Scholar 

  27. Fischmann A, Hafner P, Fasler S et al (2012) Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 259:1648–1654

    Article  CAS  Google Scholar 

  28. Bonati U, Hafner P, Schadelin S et al (2015) Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 25:679–685

    Article  Google Scholar 

  29. Forbes SC, Willcocks RJ, Triplett WT et al (2014) Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 9:e106435

    Article  Google Scholar 

  30. Fischmann A, Hafner P, Gloor M et al (2013) Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 260:969–974

    Article  Google Scholar 

  31. Wokke BH, van den Bergen JC, Versluis MJ et al (2014) Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul Disord 24:409–416

    Article  CAS  Google Scholar 

  32. Bonati U, Schmid M, Hafner P et al (2015) Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy. Muscle Nerve 51:918–921

    Article  CAS  Google Scholar 

  33. Fischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure and quantitative thigh muscle MRI in Becker muscular dystrophy: A cross-sectional study. Neuromuscul Disord 26:414–422

    Article  Google Scholar 

  34. Arpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83:974–980

    Article  CAS  Google Scholar 

  35. Willcocks RJ, Arpan IA, Forbes SC et al (2014) Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 24:393–401

    Article  CAS  Google Scholar 

  36. Hafner P, Bonati U, Erne B et al (2016) Improved muscle function in Duchenne muscular dystrophy through L-arginine and metformin: an investigator-initiated, open-label, single-center, proof-of-concept-study. PLoS One 11:e0147634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, D., Bonati, U., Wattjes, M.P. (2019). Muscle MRI as an Endpoint in Clinical Trials. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_40

Download citation

Publish with us

Policies and ethics