Skip to main content

Gene Therapy for X-Linked Myotubular Myopathy

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

X-linked myotubular myopathy (XLMTM) emerges from mutations in the MTM1 gene and affects around 1 in 50,000 live-born male infants. This congenital myopathy has currently no treatment and leads to a severe impairment of motor skills and ventilation and premature death. In this chapter, we synthetize the results of gene therapy studies using recombinant adeno-associated vectors in preclinical models of X-linked myotubular myopathy. Over the past few years, the field has rapidly moved from myotubularin-deficient mice to dogs and has now begun the first clinical gene therapy trial for XLMTM. In both mice and dogs, a single intravenous injection of adeno-associated vector leads to a complete rescue of key pathological phenotypes, including motor and respiratory functions, and life expectancy. Despite the treatment being well tolerated in both animal models, we also interrogated some of the issues commonly encountered in gene therapy studies, notably immune responses against the vector capsid or the transgene product, genotoxicity, and off-target effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034

    Article  Google Scholar 

  2. Pacak CA, Conlon T, Mah CS, Byrne BJ (2008) Relative persistence of AAV serotype 1 vector genomes in dystrophic muscle. Genet Vaccines Ther 6:14

    Article  Google Scholar 

  3. Le Hir M, Goyenvalle A, Peccate C, Précigout G, Davies KE, Voit T, Garcia L, Lorain S (2013) AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther 21:1551–1558

    Article  Google Scholar 

  4. Dupont J-B, Tournaire B, Georger C et al (2015) Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA. Mol Ther Methods Clin Dev 2:15010

    Article  Google Scholar 

  5. Buj-Bello A, Fougerousse F, Schwab Y et al (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143

    Article  CAS  Google Scholar 

  6. Childers MK, Joubert R, Poulard K et al (2014) Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6:220ra10

    Article  Google Scholar 

  7. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  CAS  Google Scholar 

  8. Wallgren-Pettersson C, Clarke A, Samson F, Fardeau M, Dubowitz V, Moser H, Grimm T, Barohn RJ, Barth PG (1995) The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies. J Med Genet 32:673–679

    Article  CAS  Google Scholar 

  9. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  Google Scholar 

  10. Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412

    Article  CAS  Google Scholar 

  11. Lawlor MW, Beggs AH, Buj-Bello A et al (2016) Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol 75:102–110

    Article  CAS  Google Scholar 

  12. Shichiji M, Biancalana V, Fardeau M, Hogrel J-Y, Osawa M, Laporte J, Romero NB (2013) Extensive morphological and immunohistochemical characterization in myotubular myopathy. Brain Behav 3:476–486

    Article  Google Scholar 

  13. Lawlor MW, Alexander MS, Viola MG et al (2012) Myotubularin-deficient myoblasts display increased apoptosis, delayed proliferation, and poor cell engraftment. Am J Pathol 181:961–968

    Article  CAS  Google Scholar 

  14. Dowling JJ, Joubert R, Low SE et al (2012) Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis Model Mech 5:852–859

    Article  CAS  Google Scholar 

  15. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    Article  Google Scholar 

  16. Al-Qusairi L, Weiss N, Toussaint A et al (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768

    Article  CAS  Google Scholar 

  17. Lawlor MW, Armstrong D, Viola MG et al (2013) Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 22:1525–1538

    Article  CAS  Google Scholar 

  18. Lawlor MW, Read BP, Edelstein R et al (2011) Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. Am J Pathol 178:784–793

    Article  CAS  Google Scholar 

  19. Lawlor MW, Viola MG, Meng H et al (2014) Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice. Am J Pathol 184:1831–1842

    Article  CAS  Google Scholar 

  20. Razidlo GL, Katafiasz D, Taylor GS (2011) Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 286:20005–20019

    Article  CAS  Google Scholar 

  21. Fetalvero KM, Yu Y, Goetschkes M et al (2013) Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol 33:98–110

    Article  CAS  Google Scholar 

  22. Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel J-L, Laporte J (2013) Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 27:3384–3394

    Article  CAS  Google Scholar 

  23. Sabha N, Volpatti JR, Gonorazky H et al (2016) PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 126:3613–3625

    Article  Google Scholar 

  24. Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11:345–364

    Article  CAS  Google Scholar 

  25. Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    Article  CAS  Google Scholar 

  26. Hastie E, Samulski RJ (2015) Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opin Orphan Drugs 3:675–689

    Article  CAS  Google Scholar 

  27. Ylä-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20:1831–1832

    Article  Google Scholar 

  28. Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92

    Article  CAS  Google Scholar 

  29. Lisowski L, Tay SS, Alexander IE (2015) Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 24:59–67

    Article  CAS  Google Scholar 

  30. Odom GL, Gregorevic P, Allen JM, Chamberlain JS (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19:36–45

    Article  CAS  Google Scholar 

  31. Koo T, Malerba A, Athanasopoulos T, Trollet C, Boldrin L, Ferry A, Popplewell L, Foster H, Foster K, Dickson G (2011) Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice. Hum Gene Ther 22:1379–1388

    Article  CAS  Google Scholar 

  32. Le Guiner C, Montus M, Servais L et al (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 22:1923–1935

    Article  Google Scholar 

  33. Xu L, Lu PJ, Wang C-H, Keramaris E, Qiao C, Xiao B, Blake DJ, Xiao X, Lu QL (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21:1832–1840

    Article  CAS  Google Scholar 

  34. Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR (2016) β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice. Gene Ther 23:57–66

    Article  CAS  Google Scholar 

  35. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 21:282–290

    Article  CAS  Google Scholar 

  36. Meyer K, Ferraiuolo L, Schmelzer L et al (2015) Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 23:477–487

    Article  CAS  Google Scholar 

  37. Qiu K, Falk DJ, Reier PJ, Byrne BJ, Fuller DD (2012) Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice. Mol Ther 20:21–27

    Article  CAS  Google Scholar 

  38. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier J-F, Mandel J-L (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 99:15060–15065

    Article  CAS  Google Scholar 

  39. Amoasii L, Bertazzi DL, Tronchère H et al (2012) Phosphatase-dead myotubularin ameliorates X-linked centronuclear myopathy phenotypes in mice. PLoS Genet 8:e1002965

    Article  CAS  Google Scholar 

  40. Beggs AH, Böhm J, Snead E et al (2010) MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci U S A 107:14697–14702

    Article  CAS  Google Scholar 

  41. Goddard MA, Mack DL, Czerniecki SM, Kelly VE, Snyder JM, Grange RW, Lawlor MW, Smith BK, Beggs AH, Childers MK (2015) Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy. Ann Transl Med 3:262

    PubMed  PubMed Central  Google Scholar 

  42. Grange RW, Doering J, Mitchell E, Holder MN, Guan X, Goddard M, Tegeler C, Beggs AH, Childers MK (2012) Muscle function in a canine model of X-linked myotubular myopathy. Muscle Nerve 46:588–591

    Article  Google Scholar 

  43. Snyder JM, Meisner A, Mack D, Goddard M, Coulter IT, Grange R, Childers MK (2015) Validity of a neurological scoring system for canine X-linked myotubular myopathy. Hum Gene Ther Clin Dev 26:131–137

    Article  CAS  Google Scholar 

  44. Su LT, Gopal K, Wang Z et al (2005) Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 112:1780–1788

    Article  CAS  Google Scholar 

  45. Toromanoff A, Chérel Y, Guilbaud M et al (2008) Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol Ther 16:1291–1299

    Article  CAS  Google Scholar 

  46. Mack DL, Poulard K, Goddard MA et al (2017) Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther 25(4):839–854. https://doi.org/10.1016/j.ymthe.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  Google Scholar 

  48. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  CAS  Google Scholar 

  49. Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  CAS  Google Scholar 

  50. Haurigot V, Mingozzi F, Buchlis G et al (2010) Safety of AAV factor IX peripheral transvenular gene delivery to muscle in hemophilia B dogs. Mol Ther 18:1318–1329

    Article  CAS  Google Scholar 

  51. Nathwani AC, Reiss UM, Tuddenham EGD et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994–2004

    Article  Google Scholar 

  52. Mendell JR, Campbell K, Rodino-Klapac L et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363:1429–1437

    Article  CAS  Google Scholar 

  53. Elverman M, Goddard MA, Mack D et al (2017) Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 56(5):943–953. https://doi.org/10.1002/mus.25658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chandler RJ, LaFave MC, Varshney GK et al (2015) Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 125:870–880

    Article  Google Scholar 

  55. Vincent-Lacaze N, Snyder RO, Gluzman R, Bohl D, Lagarde C, Danos O (1999) Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J Virol 73:1949–1955

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Penaud-Budloo M, Le Guiner C, Nowrouzi A et al (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82:7875–7885

    Article  CAS  Google Scholar 

  57. Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C, Moullier P, von Kalle C, Snyder RO, Schmidt M (2012) Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol Ther 20:1177–1186

    Article  CAS  Google Scholar 

  58. Kaeppel C, Beattie SG, Fronza R et al (2013) A largely random AAV integration profile after LPLD gene therapy. Nat Med 19:889–891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Dupont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dupont, JB., Lawlor, M.W., Childers, M.K. (2019). Gene Therapy for X-Linked Myotubular Myopathy. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_32

Download citation

Publish with us

Policies and ethics