Skip to main content

Burkholderia mallei and Glanders

  • Chapter
  • First Online:
Defense Against Biological Attacks

Abstract

Glanders is a zoonotic disease mainly afflicting solipeds and caused by the Gram-negative bacillus Burkholderia mallei. Unlike its evolutionary counterpart, Burkholderia pseudomallei, which can live for extended periods of time outside a host, B. mallei is a host-adapted intracellular bacterium capable of limited survival in the environment. Though humans are considered accidental hosts, its ability to be aerosolized combined with low infectivity dose have contributed to the re-surfaced interest to understand glanders. This pathogen has a long history associated with natural infection, military involvement, and as a biological weapon, B. mallei has been classified as a Tier 1 Select Agent. Despite the eradication of glanders from Northern America and Western Europe, recent outbreaks in endemic areas, including Western Asia, Northern India, and South America have classified this bacteria as a re-emerging pathogen. Its high rate of mortality, antimicrobial resistance, and its role as potential bioweapon threat have prompted recent advancements in understanding its pathogenesis and development of novel therapeutics and prophylactic vaccines for at-risk individuals, including military personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines. 2016;15:1163–81.

    Article  CAS  PubMed  Google Scholar 

  2. Dvorak GD, Spickler AR. Glanders. J Am Vet Med Assoc. 2008;233:570–7.

    Article  PubMed  Google Scholar 

  3. Kettle AN, Wernery U. Glanders and the risk for its introduction through the international movement of horses. Equine Vet J. 2016;48:654–8.

    Article  CAS  PubMed  Google Scholar 

  4. Khan I, Wieler LH, Melzer F, Elschner MC, Muhammad G, Ali S, Sprague LD, Neubauer H, Saqib M. Glanders in animals: a review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound Emerg Dis. 2013;60:204–21.

    Article  CAS  PubMed  Google Scholar 

  5. Whitlock GC, Estes DM, Torres AG. Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett. 2007;277:115–22.

    Article  CAS  PubMed  Google Scholar 

  6. Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol. 2007;73:5308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol. 2006;56:1847–51.

    Article  CAS  PubMed  Google Scholar 

  8. Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol. 2003;5:719–29.

    Article  CAS  PubMed  Google Scholar 

  9. Suarez-Moreno ZR, Caballero-Mellado J, Venturi V. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology. 2008;154:2048–59.

    Article  CAS  PubMed  Google Scholar 

  10. Burns JL, Jonas M, Chi EY, Clark DK, Berger A, Griffith A. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect Immun. 1996;64:4054–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Glass MB, Gee JE, Steigerwalt AG, Cavuoti D, Barton T, Hardy RD, Godoy D, Spratt BG, Clark TA, Wilkins PP. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J Clin Microbiol. 2006;44:4601–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagg DM, DeShazer D. Glanders, new insights into an old disease. In: Lindler LE, Lebeda FJ, Korch GW, editors. Biological Weapons Defense: Infectious Diseases and Counterbioterrorism. Totowa: Hamana Press; 2004. p. 209–38.

    Google Scholar 

  13. Sharrer GT. The great glanders epizootic, 1861-1866: a Civil War legacy. Agric Hist. 1995;69:79–97.

    CAS  PubMed  Google Scholar 

  14. Shimshony A. Glanders: an ancient zoonosis revisited. Infectious Disease News. 2008;21:10–1.

    Google Scholar 

  15. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36:1251–75.

    Article  CAS  PubMed  Google Scholar 

  16. Wernery U, Wernery R, Joseph M, Al-Salloom F, Johnson B, Kinne J, Jose S, Jose S, Tappendorf B, Hornstra H, Scholz HC. Natural Burkholderia mallei infection in Dromedary. Bahrain. Emerg Infect Dis. 2011;17:1277–9.

    Article  PubMed  Google Scholar 

  17. Hatcher CL, Mott TM, Muruato LA, Sbrana E, Torres AG. Burkholderia mallei CLH001 attenuated vaccine strain is immunogenic and protects against acute respiratory glanders. Infect Immun. 2016;84:2345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malik P, Khurana SK, Dwivedi SK. Re-emergence of glanders in India – Report of Maharashtra state. Indian J Microbiol. 2010;50:345–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Geissler EM, van Courtland JE. Biological and toxin weapons: Research, development and use from the middle ages to 1945. [Stockholm International Peace Institute] SIPRI Chemical and Biological Warfare Studies no. 18, 1999.

    Google Scholar 

  20. Wheelis M. First shots fired in biological warefare. Nature. 1998;395:213.

    Article  CAS  PubMed  Google Scholar 

  21. Harris SH. Human experiments: “secrets of secrets”. In: Factories of Death: Japanese biological warfare 1932–1945, and the American cover-up. 2nd ed. New York: Routledge; 2002. p. 59–66.

    Chapter  Google Scholar 

  22. Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004;101:14240–5.

    Article  CAS  PubMed  Google Scholar 

  23. Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White OY, Yu Y, Zafar N, Zhou L, Fraser CM. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA. 2004;101:14246–51.

    Article  CAS  PubMed  Google Scholar 

  24. Memisevic V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol. 2015;11:e1004088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Essex-Lopresti AE, Boddey JA, Thomas R, Smith MP, Hartley MG, Atkins T, Brown NF, Tsang CH, Peak IR, Hill J, Beacham IR, Titball RW. A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infect Immun. 2005;73:1260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitlock GC, Valbuena GA, Popov VL, Judy BM, Estes DM, Torres AG. Burkholderia mallei cellular interactions in a respiratory cell model. J Med Microbiol. 2009;58:554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu R, Popov V, Patel J, Eaves-Pyles T. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages. Front Cell Infect Microbiol. 2012;2:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balder R, Lipski S, Lazarus JJ, Grose W, Wooten RM, Hogan RJ, Woods DE, Lafontaine ER. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells. BMC Microbiol. 2010;10:250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ulrich RL, DeShazer D. Type III Secretion: a Virulence Factor Delivery System Essential for the Pathogenicity of Burkholderia mallei. Infect Immun. 2004;72:1150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun GW, Gan YH. Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol. 2010;18:561–8.

    Article  CAS  PubMed  Google Scholar 

  31. Stevens MP, Haque A, Atkins T, Hill J, Wood MW, Easton A, Nelson M, Underwood-Fowler C, Titball RW, Bancroft GJ, Galyov EE. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology. 2004;150:2669–76.

    Article  CAS  PubMed  Google Scholar 

  32. Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S. Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol. 2005;187:6556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, Eberl L, Steinmetz I. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 2006;74:3576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrazek J, Nierman WC, Deshazer D. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 2007;64:1466–85.

    Article  CAS  PubMed  Google Scholar 

  35. Burtnick MN, Brett PJ. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc. PLoS One. 2013;8:e76767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA. 2009;106:4154–9.

    Article  CAS  PubMed  Google Scholar 

  37. Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL, Peacock SJ, Prior JL, Atkins TP, Deshazer D. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011;79:1512–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burtnick MN, DeShazer D, Nair V, Gherardini FC, Brett PJ. Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 2010;78:88–99.

    Article  CAS  PubMed  Google Scholar 

  39. Bozue JA, Chaudhury S, Amemiya K, Chua J, Cote CK, Toothman RG, Dankmeyer JL, Klimko CP, Wilhelmsen CL, Raymond JW, Zavaljevski N, Reifman J, Wallqvist A. Phenotypic characterization of a novel virulence-factor deletion strain of Burkholderia mallei that provides partial protection against inhalational glanders in mice. Front Cell Infect Microbiol. 2016;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007;153:2689–99.

    Article  CAS  PubMed  Google Scholar 

  41. Shanks J, Burtnick MN, Brett PJ, Waag DM, Spurgers KB, Ribot WJ, Schell MA, Panchal RG, Gherardini FC, Wilkinson KD, Deshazer D. Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 2009;77:1636–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duerkop BA, Herman JP, Ulrich RL, Churchill ME, Greenberg EP. The Burkholderia mallei BmaR3-BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J Bacteriol. 2008;190:5137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duerkop BA, Ulrich RL, Greenberg EP. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J Bacteriol. 2007;189:5034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dautin N, Bernstein HD. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol. 2007;61:89–112.

    Article  CAS  PubMed  Google Scholar 

  45. Tiyawisutsri R, Holden MT, Tumapa S, Rengpipat S, Clarke SR, Foster SJ, Nierman WC, Day NP, Peacock SJ. Burkholderia Hep_Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis. BMC Microbiol. 2007;7:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stevens JM, Ulrich RL, Taylor LA, Wood MW, Deshazer D, Stevens MP, Galyov EE. Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant. J Bacteriol. 2005;187:7857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Zandt KE, Greer MT, Gelhaus HC. Glanders: an overview of infection in humans. Orphanet J Rare Dis. 2013;8:131.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scholz HC, Pearson T, Hornstra H, Projahn M, Terzioglu R, Wernery R, Georgi E, Riehm JM, Wagner DM, Keim PS, Joseph M, Johnson B, Kinne J, Jose S, Hepp CM, Witte A, Wernery U. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events. PLoS Negl Trop Dis. 2014;8:e3195.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mota RA, da Fonseca Oliveira AA, da Silva AM, Junior JW, da Silva LB, de Farias Brito M, Rabelo SS. Glanders in donkeys (Equus Asinus) in the state of pernambuco, Brazil: a case report. Braz J Microbiol. 2010;41:146–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lesté-Lasserre C. Glanders detected at 2016 Olympic equestrian facilities. The Horse, 2015. http://www.thehorse.com/articles/36220/glanders-detected-at-2016-olympic-equestrian-facilities

  51. Jurga F. Glanders: Rio 2016 Olympic equestrian site latest hot spot for world-stopping disease. Equus, 2015. http://equusmagazine.com/blog-equus/glanders-rio-2016-olympic-equestrian-site-29349

  52. Malik P, Singha H, Khurana SK, Kumar R, Kumar S, Raut AA, Riyesh T, Vaid RK, Virmani N, Singh BK, Pathak SV, Parkale DD, Singh B, Pandey SB, Sharma TR, Chauhan BC, Awasthi V, Jain S, Singh RK. Emergence and re-emergence of glanders in India: a description of outbreaks from 2006 to 2011. Vet Ital. 2012;48:167–78.

    PubMed  Google Scholar 

  53. Malik P, Singha H, Goyal SK, Khurana SK, Tripathi BN, Dutt A, Singh D, Sharma N, Jain S. Incidence of Burkholderia mallei infection among indigenous equines in India. Vet Rec Open. 2015;2:e000129.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dailyexcelsior. Serious disease ‘Glanders’ detected in horses carrying Vaishno Devi yatris, 2015. DailyExcelsior.com http://www.dailyexcelsior.com/serious-disease-glanders-detected-in-horses-carrying-vaishno-devi-yatris/.

  55. Bondi SK, Goldberg JB. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei. Expert Rev Vaccines. 2008;7:1357–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, Mariappan V, Vadivelu J. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol. 2013;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti-Infect Ther. 2010;8:325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skyberg JA. Immunopotentiation for bacterial biodefense. Curr Top Med Chem. 2014;14:2115–26.

    Article  CAS  PubMed  Google Scholar 

  59. Andreu D, Carreno C, Linde C, Boman HG, Andersson M. Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem J. 1999;344:845–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Endsley JJ, Torres AG, Gonzales CM, Kosykh VG, Motin VL, Peterson JW, Estes DM, Klimpel GR. Comparative antimicrobial activity of granulysin against bacterial biothreat agents. Open Microbiol J. 2009;3:92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cannon CL, Hogue LA, Vajravelu RK, Capps GH, Ibricevic A, Hindi KM, Kascatan-Nebioglu A, Walter MJ, Brody SL, Youngs WJ. In vitro and murine efficacy and toxicity studies of nebulized SCC1, a methylated caffeine-silver(I) complex, for treatment of pulmonary infections. Antimicrob Agents Chemother. 2009;53:3285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hindi KM, Ditto AJ, Panzner MJ, Medvetz DA, Han DS, Hovis CE, Hilliard JK, Taylor JB, Yun YH, Cannon CL, Youngs WJ. The antimicrobial efficacy of sustained release silver-carbene complex-loaded L-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials. 2009;30:3771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kascatan-Nebioglu A, Melaiye A, Hindi K, Durmus S, Panzner MJ, Hogue LA, Mallett RJ, Hovis CE, Coughenour M, Crosby SD, Milsted A, Ely DL, Tessier CA, Cannon CL, Youngs WJ. Synthesis from caffeine of a mixed N-heterocyclic carbene-silver acetate complex active against resistant respiratory pathogens. J Med Chem. 2006;49:6811–8.

    Article  CAS  PubMed  Google Scholar 

  64. Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine [Epub ahead of print] Mar 20; 2017.

    Google Scholar 

  65. Feodorova VA, Sayapina LV, Corbel MJ, Motin VL. Russian vaccines against especially dangerous bacterial pathogens. Emerg Microbes Infect. 2014;3:e86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mott TM, Vijayakumar S, Sbrana E, Endsley JJ, Torres AG. Characterization of the Burkholderia mallei tonB mutant and its potential as a backbone strain for vaccine development. PLoS Negl Trop Dis. 2015;9:e0003863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bandara AB, DeShazer D, Inzana TJ, Sriranganathan N, Schurig GG, Boyle SM. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice. Microb Pathog. 2008;45:207–16.

    Article  CAS  PubMed  Google Scholar 

  68. Ulrich RL, Deshazer D, Hines HB, Jeddeloh JA. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect Immun. 2004;72:6589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ulrich RL, Amemiya K, Waag DM, Roy CJ, DeShazer D. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. Vaccine. 2005;23:1986–92.

    Article  CAS  PubMed  Google Scholar 

  70. Amemiya K. Nonviable Burkholderia mallei induces a mixed Th1- and Th2-like cytokine response in BALB/c mice. Infect Immun. 2002;70:2319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Whitlock GC, Lukaszewski RA, Judy BM, Paessler S, Torres AG, Estes DM. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei. BMC Immunol. 2008;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amemiya K, Meyers JL, Trevino SR, Chanh TC, Norris SL, Waag DM. Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice. Vaccine. 2006;24:1413–20.

    Article  CAS  PubMed  Google Scholar 

  73. Scott AE, Ngugi SA, Laws TR, Corser D, Lonsdale CL, D'Elia RV, Titball RW, Williamson ED, Atkins TP, Prior JL. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J Immunol Res. 2014;2014:392170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Su YC, Wan KL, Mohamed R, Nathan S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine. 2010;28:5005–11.

    Article  CAS  PubMed  Google Scholar 

  75. Whitlock GC, Deeraksa A, Qazi O, Judy BM, Taylor K, Propst KL, Duffy AJ, Johnson K, Kitto GB, Brown KA, Dow SW, Torres AG, Estes DM. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge. Procedia Vaccinol. 2010;2:73–7.

    Article  CAS  Google Scholar 

  76. Torres AG, Gregory AE, Hatcher CL, Vinet-Oliphant H, Morici LA, Titball RW, Roy CJ. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine. 2015;33:686–92.

    Article  CAS  PubMed  Google Scholar 

  77. Gregory AE, Judy BM, Qazi O, Blumentritt CA, Brown KA, Shaw AM, Torres AG, Titball RW. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine. 2015;11:447–56.

    Article  CAS  PubMed  Google Scholar 

  78. Whitlock GC, Robida MD, Judy BM, Qazi O, Brown KA, Deeraksa A, Taylor K, Massey S, Loskutov A, Borovkov AY, Brown K, Cano JA, Torres AG, Estes DM, Sykes KF. Protective antigens against glanders identified by expression library immunization. Front Microbiol. 2011;2:227.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev. 2005;18:383–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hatcher CL, Muruato LA, Torres AG. Recent advances in Burkholderia mallei and B. pseudomallei research. Curr Trop Med Rep. 2015;2:62–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Amornchai P, Chierakul W, Wuthiekanun V, Mahakhunkijcharoen Y, Phetsouvanh R, Currie BJ, Newton PN, van Vinh Chau N, Wongratanacheewin S, Day NP, Peacock SJ. Accuracy of Burkholderia pseudomallei identification using the API 20NE system and a latex agglutination test. J Clin Microbiol. 2007;45:3774–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Anuntagool N, Naigowit P, Petkanchanapong V, Aramsri P, Panichakul T, Sirisinha S. Monoclonal antibody-based rapid identification of Burkholderia pseudomallei in blood culture fluid from patients with community-acquired septicaemia. J Med Microbiol. 2000;49:1075–8.

    Article  CAS  PubMed  Google Scholar 

  83. Samosornsuk N, Sirisinha S, Lulitanond A, Saenla N, Anuntagool N, Wongratanacheewin S. Short report: evaluation of a monoclonal antibody-based latex agglutination test for rapid diagnosis of septicemic melioidosis. Am J Trop Med Hyg. 1999;61:735–7.

    Article  CAS  PubMed  Google Scholar 

  84. Wuthiekanun V, Anuntagool N, White NJ, Sirisinha S. Short report: a rapid method for the differentiation of Burkholderia pseudomallei and Burkholderia thailandensis. Am J Trop Med Hyg. 2002;66:759–61.

    Article  PubMed  Google Scholar 

  85. Duval BD, Elrod MG, Gee JE, Chantratita N, Tandhavanant S, Limmathurotsakul D, Hoffmaster AR. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei. Am J Trop Med Hyg. 2014;90:1043–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Neubauer H, Sprague LD, Zacharia R, Tomaso H, Al Dahouk S, Wernery R, Wernery U, Scholz HC. Serodiagnosis of Burkholderia mallei infections in horses: state-of-the-art and perspectives. J Vet Med B Infect Dis Vet Public Health. 2005;52:201–5.

    Article  CAS  PubMed  Google Scholar 

  87. Khan I, Wieler LH, Saqib M, Melzer F, Santana VL, Neubauer H, Elschner MC. Effect of incubation temperature on the diagnostic sensitivity of the glanders complement fixation test. Rev Sci Tech. 2014;33:869–75.

    Article  CAS  PubMed  Google Scholar 

  88. Khan I, Wieler LH, Melzer F, Gwida M, Santana VL, de Souza MM, Saqib M, Elschner MC, Neubauer H. Comparative evaluation of three commercially available complement fixation test antigens for the diagnosis of glanders. Vet Rec. 2011;169:495.

    Article  CAS  PubMed  Google Scholar 

  89. Khan I, Elschner MC, Melzer F, Gwida M, Wieler LH, Ali R, Saqib M, Neubauer H. Performance of complement fixation test and confirmatory immunoblot as two-cascade testing approach for serodiagnosis of glanders in an endemic region of South East Asia. Berliner Und Munchener Tierarztliche Wochenschrift. 2012;125:117–21.

    PubMed  Google Scholar 

  90. Verma RD, Venkateswaran KS, Sharma JK, Agarwal GS. Potency of partially purified malleo-proteins for mallein test in the diagnosis of glanders in equines. Vet Microbiol. 1994;41:391–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hagebock JM, Schlater LK, Frerichs WM, Olson DP. Serologic responses to the mallein test for glanders in solipeds. J Vet Diagn Investig. 1993;5:97–9.

    Article  CAS  Google Scholar 

  92. Kumar S, Malik P, Verma SK, Pal V, Gautam V, Mukhopadhyay C, Rai GP. Use of a recombinant Burkholderia intracellular motility a protein for immunodiagnosis of glanders. Clin Vaccine Immunol. 2011;18: 1456–61.

    Article  CAS  PubMed  Google Scholar 

  93. Pal V, Kumar S, Malik P, Rai GP. Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders. Clin Vaccine Immunol. 2012;19:1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singha H, Malik P, Goyal SK, Khurana SK, Mukhopadhyay C, Eshwara VK, Singh RK. Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014;2014:469407.

    PubMed  PubMed Central  Google Scholar 

  95. Lowe W, March JK, Bunnell AJ, O’Neill KL, Robison RA. PCR-based methodologies used to detect and differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis. Curr Issues Mol Biol. 2014;16:23–54.

    PubMed  Google Scholar 

  96. Gee JE, Sacchi CT, Glass MB, De BK, Weyant RS, Levett PN, Whitney AM, Hoffmaster AR, Popovic T. Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J Clin Microbiol. 2003;41:4647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sprague LD, Zysk G, Hagen RM, Meyer H, Ellis J, Anuntagool N, Gauthier Y, Neubauer H. A possible pitfall in the identification of Burkholderia mallei using molecular identification systems based on the sequence of the flagellin fliC gene. FEMS Immunol Med Microbiol. 2002;34:231–6.

    Article  CAS  PubMed  Google Scholar 

  98. Tomaso H, Pitt TL, Landt O, Al Dahouk S, Scholz HC, Reisinger EC, Sprague LD, Rathmann I, Neubauer H. Rapid presumptive identification of Burkholderia pseudomallei with real-time PCR assays using fluorescent hybridization probes. Mol Cell Probes. 2005;19:9–20.

    Article  CAS  PubMed  Google Scholar 

  99. Tomaso H, Scholz HC, Al Dahouk S, Eickhoff M, Treu TM, Wernery R, Wernery U, Neubauer H. Development of a 5'-nuclease real-time PCR assay targeting fliP for the rapid identification of Burkholderia mallei in clinical samples. Clin Chem. 2006;52:307–10.

    Article  CAS  PubMed  Google Scholar 

  100. Tomaso H, Scholz HC, Al Dahouk S, Pitt TL, Treu TM, Neubauer H. Development of 5' nuclease real-time PCR assays for the rapid identification of the Burkholderia mallei/Burkholderia pseudomallei complex. Diagn Mol Pathol. 2004;13:247–53.

    Article  CAS  PubMed  Google Scholar 

  101. Scholz HC, Joseph M, Tomaso H, Al Dahouk S, Witte A, Kinne J, Hagen RM, Wernery R, Wernery U, Neubauer H. (2006). Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay. Diagn Microbiol Infect Dis. 2006;54:241–7.

    Article  CAS  PubMed  Google Scholar 

  102. Ulrich MP, Norwood DA, Christensen DR, Ulrich RL. Using real-time PCR to specifically detect Burkholderia mallei. J Med Microbiol. 2006;55:551–9.

    Article  CAS  PubMed  Google Scholar 

  103. Janse I, Hamidjaja RA, Hendriks AC, van Rotterdam BJ. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei. BMC Infect Dis. 2013;13:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bowers JR, Engelthaler DM, Ginther JL, Pearson T, Peacock SJ, Tuanyok A, Wagner DM, Currie BJ, Keim PS. BurkDiff: a real-time PCR allelic discrimination assay for Burkholderia pseudomallei and B. mallei. PLoS One. 2010;5:e15413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karger A, Stock R, Ziller M, Elschner MC, Bettin B, Melzer F, Maier T, Kostrzewa M, Scholz HC, Neubauer H, Tomaso H. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell matrix-assisted laser desorption/ionisation mass spectrometric typing. BMC Microbiol. 2012;12:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mirzai S, Safi S, Mossavari N, Afshar D, Bolourchian M. Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei. Cell Mol Biol (Noisy-le-Grand). 2016;62:32–6.

    CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by NIH NIAID Grant AI12660101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo G. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khakhum, N., Tapia, D., Torres, A.G. (2019). Burkholderia mallei and Glanders. In: Singh, S., Kuhn, J. (eds) Defense Against Biological Attacks. Springer, Cham. https://doi.org/10.1007/978-3-030-03071-1_7

Download citation

Publish with us

Policies and ethics