Skip to main content

The Neurobiology of Gambling Disorder: Neuroscientific Studies and Computational Perspectives

  • Chapter
  • First Online:
Gambling Disorder

Abstract

This chapter gives an overview on neurobehavioral findings concerning gambling disorder (GD). We classify studies into classical and computational psychiatry studies and into three categories related to different symptom clusters: loss of control, craving, and neglect of other areas in life. Studies using classical analyses are those that set into relationship measured random variables by estimating their respective means, variances, and covariances. Computational psychiatry studies and computational analyses are those that explicitly assume one or several cognitive-computational processes responsible for generating the data. Analyses could involve reinforcement learning models fit to behavioral choice data or neural network models fit to brain data. Computational psychiatry aims at taking a closer look at processes underlying psychological disorders. Note that we will also use a computational psychiatry perspective when reporting on the classical neurobiological GD studies here. This means we will review primary research articles with respect to computationally relevant processes such as cue reactivity, response inhibition, gain and loss processing, uncertainty, and delay processing as well as learning from reward and punishment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potenza MN. Neurobiology of gambling behaviors. Curr Opin Neurobiol. 2013a;23:660–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quester S, Romanczuk-Seiferth N. Brain imaging in gambling disorder. Curr Addict Rep. 2015;2:220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Romanczuk-Seiferth N, van den Brink W, Goudriaan AE. From symptoms to neurobiology: pathological gambling in the light of the new classification in DSM-5. Neuropsychobiology. 2014;70:95–102.

    Article  CAS  PubMed  Google Scholar 

  4. Stephan KE, Iglesias S, Heinzle J, Diaconescu AO. Translational perspectives for computational neuroimaging. Neuron. 2015;87:716–32.

    Article  CAS  PubMed  Google Scholar 

  5. Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.

    Article  CAS  PubMed  Google Scholar 

  6. Sutton RS. Introduction to reinforcement learning. Cambridge, MA: MIT Press; 1998.

    Book  Google Scholar 

  7. Basten U, Biele G, Heekeren HR, Fiebach CJ. How the brain integrates costs and benefits during decision making. Proc Natl Acad Sci. 2010;107:21767–72.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bischof A, Meyer C, Bischof G, John U, Wurst FM, Thon N, et al. Suicidal events among pathological gamblers: the role of comorbidity of axis I and axis II disorders. Psychiatry Res. 2015;225:413–9.

    Article  PubMed  Google Scholar 

  9. Bundeszentrale für gesundheitliche Aufklärung. Glücksspielverhalten und Glücksspielsucht in Deutschland. Ergebnisse des Surveys 2013 und Trends. Bundeszentrale Für Gesundheitliche Aufklär. 2014.

    Google Scholar 

  10. Meyer C, Bischof A, Westram A, Jeske C, de Brito S, Glorius S, et al. The “Pathological Gambling and Epidemiology” (PAGE) study program: design and fieldwork. Int J Methods Psychiatr Res. 2015;24:11–31.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raylu N, Oei TPS. Pathological gambling: a comprehensive review. Clin Psychol Rev. 2002;22:1009–61.

    Article  PubMed  Google Scholar 

  12. Grinols EL, Mustard DB. Business profitability versus social profitability: evaluating industries with externalities, the case of casinos. Manag Decis Econ. 2001;22:143–62.

    Article  Google Scholar 

  13. Ladouceur R, Boisvert J-M, Pépin M, Loranger M, Sylvain C. Social cost of pathological gambling. J Gambl Stud. 1994;10:399–409.

    Article  CAS  PubMed  Google Scholar 

  14. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association, DSM-5 task force. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  15. Clark L. Disordered gambling: the evolving concept of behavioral addiction. Ann N Y Acad Sci. 2014;1327:46–61.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clark L, Averbeck B, Payer D, Sescousse G, Winstanley CA, Xue G. Pathological choice: the neuroscience of gambling and gambling addiction. J Neurosci. 2013;33:17617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fauth-Bühler M, Mann K, Potenza MN. Pathological gambling: a review of the neurobiological evidence relevant for its classification as an addictive disorder. Addict Biol. 2017;22:885–97.

    Article  PubMed  Google Scholar 

  18. Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology. 2012;219:469–90.

    Article  CAS  PubMed  Google Scholar 

  19. Petry NM, Blanco C, Auriacombe M, Borges G, Bucholz K, Crowley TJ, et al. An overview of and rationale for changes proposed for pathological gambling in DSM-5. J Gambl Stud. 2014;30:493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66:734–42.

    Article  CAS  PubMed  Google Scholar 

  21. Beck A, Wüstenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients relapse in alcohol-dependent patients. Arch Gen Psychiatry. 2012;69:842–52.

    Article  PubMed  Google Scholar 

  22. Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90(Suppl 1):S85–91.

    Article  PubMed  Google Scholar 

  23. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C] raclopride. Addiction. 2013;108:953–63.

    Article  PubMed  Google Scholar 

  24. Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2016;21:719–31.

    Article  CAS  PubMed  Google Scholar 

  25. Gelskov SV, Madsen KH, Ramsøy TZ, Siebner HR. Aberrant neural signatures of decision-making: pathological gamblers display cortico-striatal hypersensitivity to extreme gambles. Neuroimage. 2016;128:342–52.

    Article  PubMed  Google Scholar 

  26. Heinz A, Siessmeier T, Wrase J, Buchholz HG, Gründer G, Kumakura Y, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry. 2005b;162:1515–20.

    Article  PubMed  Google Scholar 

  27. Joutsa J, Johansson J, Niemelä S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage. 2012;60:1992–9.

    Article  CAS  PubMed  Google Scholar 

  28. Koehler S, Hasselmann E, Wüstenberg T, Heinz A, Romanczuk-Seiferth N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. 2015;220:469–77.

    Article  PubMed  Google Scholar 

  29. Park SQ, Kahnt T, Beck A, Cohen MX, Dolan RJ, Wrase J, et al. Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci. 2010;30:7749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romanczuk-Seiferth N, Koehler S, Dreesen C, Wüstenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20:557–69.

    Article  PubMed  Google Scholar 

  31. Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci. 2008;28:14311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage. 2007;35:787–94.

    Article  PubMed  Google Scholar 

  33. Genauck A, Huys QJ, Heinz A, Rapp MA. Pawlowsch-Instrumentelle Transfereffekte bei Alkoholabhängigkeit. SUCHT. 2013;59:215–23.

    Article  Google Scholar 

  34. Huys QJM, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, et al. Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Comput Biol. 2011;7:e1002028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huys QJM, Deserno L, Obermayer K, Schlagenhauf F, Heinz A. Model-free temporal-difference learning and dopamine in alcohol dependence: examining concepts from theory and animals in human imaging. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016a;1:401–10.

    Article  PubMed  Google Scholar 

  36. Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi A-H, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Decis Neurosci. 2014;5:1450.

    Google Scholar 

  37. Sebold M, Schad DJ, Nebe S, Garbusow M, Jünger E, Kroemer NB, et al. Don’t think, just feel the music: individuals with strong Pavlovian-to-instrumental transfer effects rely less on model-based reinforcement learning. J Cogn Neurosci. 2016;28:985–95.

    Article  PubMed  Google Scholar 

  38. Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016b;19:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paulus MP, Huys QJM, Maia TV. A roadmap for the development of applied computational psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:386–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96:103–14.

    Article  CAS  PubMed  Google Scholar 

  42. Reynolds B, Ortengren A, Richards JB, de Wit H. Dimensions of impulsive behavior: Personality and behavioral measures. Personal Individ Differ. 2006;40:305–15.

    Article  Google Scholar 

  43. Whiteside SP, Lynam DR. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. Personal Individ Differ. 2001;30:669–89.

    Article  Google Scholar 

  44. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40:1675–89.

    Article  PubMed  Google Scholar 

  45. Bechara A, Dolan S, Hindes A. Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia. 2002;40:1690–705.

    Article  PubMed  Google Scholar 

  46. Clark L. Decision-making during gambling: an integration of cognitive and psychobiological approaches. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:319–30.

    Article  Google Scholar 

  47. Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9:545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reiter AM, Heinze H-J, Schlagenhauf F, Deserno L. Impaired flexible reward-based decision-making in binge eating disorder: evidence from computational modeling and functional neuroimaging. Neuropsychopharmacology. 2017;42:628–37.

    Article  PubMed  Google Scholar 

  49. Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86.

    Article  PubMed  Google Scholar 

  50. Goudriaan AE, Oosterlaan J, De Beurs E, Van Den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006b;101:534–47.

    Article  PubMed  Google Scholar 

  51. Moccia L, Pettorruso M, De Crescenzo F, De Risio L, di Nuzzo L, Martinotti G, et al. Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev. 2017;78:104–16.

    Article  PubMed  Google Scholar 

  52. Goudriaan AE, Oosterlaan J, Beurs ED, Brink WVD. The role of self-reported impulsivity and reward sensitivity versus neurocognitive measures of disinhibition and decision-making in the prediction of relapse in pathological gamblers. Psychol Med. 2008;38:41–50.

    Article  CAS  PubMed  Google Scholar 

  53. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cogn Brain Res. 2005;23:137–51.

    Article  Google Scholar 

  54. Kertzman S, Lowengrub K, Aizer A, Vainder M, Kotler M, Dannon PN. Go–no-go performance in pathological gamblers. Psychiatry Res. 2008;161:1–10.

    Article  PubMed  Google Scholar 

  55. van Holst RJ, van Holstein M, van den Brink W, Veltman DJ, Goudriaan AE. Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One. 2012a;7:e30909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW. A neural computational model of incentive salience. PLoS Comput Biol. 2009;5:e1000437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kertzman S, Lowengrub K, Aizer A, Nahum ZB, Kotler M, Dannon PN. Stroop performance in pathological gamblers. Psychiatry Res. 2006;142:1–10.

    Article  PubMed  Google Scholar 

  58. McCusker CG. Cognitive biases and addiction: an evolution in theory and method. Addiction. 2001;96:47–56.

    Article  CAS  PubMed  Google Scholar 

  59. McCusker CG, Gettings B. Automaticity of cognitive biases in addictive behaviours: further evidence with gamblers. Br J Clin Psychol. 1997;36:543–54.

    Article  PubMed  Google Scholar 

  60. Potenza MN, Steinberg MA, Skudlarski P, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2003;60:828–36.

    Article  PubMed  Google Scholar 

  61. de Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug Alcohol Depend. 2012;121:81–9.

    Article  PubMed  Google Scholar 

  62. Field M, Munafò MR, Franken IHA. A meta-analytic investigation of the relationship between attentional bias and subjective craving in substance abuse. Psychol Bull. 2009;135:589–607.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research. Addiction. 1999;94:327–40.

    Article  CAS  PubMed  Google Scholar 

  64. Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2011;70:785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18:121–33.

    Article  PubMed  Google Scholar 

  66. Balodis IM, Lacadie CM, Potenza MN. A preliminary study of the neural correlates of the intensities of self-reported gambling urges and emotions in men with pathological gambling. J Gambl Stud. 2012b;28:493–513.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Potenza MN. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc B Biol Sci. 2008;363:3181–9.

    Article  Google Scholar 

  68. Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58:787–95.

    Article  PubMed  Google Scholar 

  70. Wölfling K, Mörsen CP, Duven E, Albrecht U, Grüsser SM, Flor H. To gamble or not to gamble: at risk for craving and relapse--learned motivated attention in pathological gambling. Biol Psychol. 2011;87:275–81.

    Article  PubMed  Google Scholar 

  71. Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, Goldstone AP, et al. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7:e992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kushner MG, Abrams K, Donahue C, Thuras P, Frost R, Kim SW. Urge to gamble in problem gamblers exposed to a casino environment. J Gambl Stud Co-Spons Natl Counc Probl Gambl Inst Study Gambl Commer Gaming. 2007;23:121–32.

    Google Scholar 

  73. van Holst RJ, Veltman DJ, van den Brink W, Goudriaan AE. Right on cue? Striatal reactivity in problem gamblers. Biol Psychiatry. 2012c;72:e23–4.

    Article  PubMed  Google Scholar 

  74. van Holst RJ, Veltman DJ, Büchel C, van den Brink W, Goudriaan AE. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry. 2012d;71:741–8.

    Article  PubMed  Google Scholar 

  75. Leyton M, Vezina P. On cue: striatal ups and downs in addictions. Biol Psychiatry. 2012;72:e21–2.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Miedl SF, Büchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34:4750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. The reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. J Psychoactive Drugs. 2000;32:1–112.

    Article  Google Scholar 

  78. Sescousse G, Barbalat G, Domenech P, Dreher J-C. Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain. 2013;136:2527–38.

    Article  PubMed  Google Scholar 

  79. Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12:20–7.

    Article  CAS  PubMed  Google Scholar 

  80. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1–25.

    Article  CAS  PubMed  Google Scholar 

  81. Berridge KC, Robinson TE. The mind of an addicted brain: neural sensitization of wanting versus liking. Curr Dir Psychol Sci. 1995;4:71–6.

    Article  Google Scholar 

  82. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

    Article  CAS  PubMed  Google Scholar 

  84. Knutson B, Adams CM, Fong GW, Hommer D, et al. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:1–5.

    Article  Google Scholar 

  85. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012a;71:749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Choi J-S, Shin Y-C, Jung WH, Jang JH, Kang D-H, Choi C-H, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One. 2012;7:e45938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsurumi K, Kawada R, Yokoyama N, Sugihara G, Sawamoto N, Aso T, et al. Insular activation during reward anticipation reflects duration of illness in abstinent pathological gamblers. Front Psychol. 2014;5:1013.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Genauck A, Quester S, Wüstenberg T, Mörsen C, Heinz A, Romanczuk-Seiferth N. Reduced loss aversion in pathological gambling and alcohol dependence is associated with differential alterations in amygdala and prefrontal functioning. Sci Rep. 2017;7:16306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tom SM, Fox CR, Trepel C, Poldrack RA. The neural basis of loss aversion in decision-making under risk. Science. 2007;315:515–8.

    Article  CAS  PubMed  Google Scholar 

  91. Fauth-Bühler M, Zois E, Vollstädt-Klein S, Lemenager T, Beutel M, Mann K. Insula and striatum activity in effort-related monetary reward processing in gambling disorder: The role of depressive symptomatology. Neuroimage Clin. 2014;6:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8.

    Article  CAS  PubMed  Google Scholar 

  93. Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res Neuroimaging. 2010;181:165–73.

    Article  Google Scholar 

  94. Habib R, Dixon MR. Neurobehavioral evidence for the “Near-Miss” effect in pathological gamblers. J Exp Anal Behav. 2010;93:313–28.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug Alcohol Depend. 2006a;84:231–9.

    Article  PubMed  Google Scholar 

  96. Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28:1276–86.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brevers D, Cleeremans A, Verbruggen F, Bechara A, Kornreich C, Verbanck P, et al. Impulsive action but not impulsive choice determines problem gambling severity. PLoS One. 2012b;7:e50647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giorgetta C, Grecucci A, Rattin A, Guerreschi C, Sanfey AG, Bonini N. To play or not to play: a personal dilemma in pathological gambling. Psychiatry Res. 2014;219:562–9.

    Article  PubMed  Google Scholar 

  99. Lorains FK, Dowling NA, Enticott PG, Bradshaw JL, Trueblood JS, Stout JC. Strategic and non-strategic problem gamblers differ on decision-making under risk and ambiguity. Addiction. 2014;109:1128–37.

    Article  PubMed  Google Scholar 

  100. Takeuchi H, Kawada R, Tsurumi K, Yokoyama N, Takemura A, Murao T, et al. Heterogeneity of loss aversion in pathological gambling. J Gambl Stud. 2016;32:1143–54.

    Article  PubMed  Google Scholar 

  101. Barkley-Levenson EE, Van Leijenhorst L, Galván A. Behavioral and neural correlates of loss aversion and risk avoidance in adolescents and adults. Dev Cogn Neurosci. 2013;3:72–83.

    Article  PubMed  Google Scholar 

  102. Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, et al. The functional and structural neural basis of individual differences in loss aversion. J Neurosci. 2013;33:14307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Litt A, Eliasmith C, Thagard P. Neural affective decision theory: choices, brains, and emotions. Cogn Syst Res. 2008;9:252–73.

    Article  Google Scholar 

  104. Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain. 2008;131:1311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kassinove JI, Schare ML. Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychol Addict Behav. 2001;15:155–8.

    Article  CAS  PubMed  Google Scholar 

  106. Parke J, Griffiths M. Gambling addiction and the evolution of the “near miss”. Addict Res Theory. 2004;12:407–11.

    Article  Google Scholar 

  107. Reid RL. The psychology of the near miss. J Gambl Behav. 1986;2:32–9.

    Article  Google Scholar 

  108. Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30:6180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Solomon RL, Kamin LJ, Wynne LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnorm Psychol. 1953;48:291–302.

    CAS  PubMed  Google Scholar 

  111. Platt ML, Huettel SA. Risky business: the neuroeconomics of decision making under uncertainty. Nat Neurosci. 2008;11:398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Minati L, Grisoli M, Franceschetti S, Epifani F, Granvillano A, Medford N, et al. Neural signatures of economic parameters during decision-making: a functional MRI (fMRI), electroencephalography (EEG) and autonomic monitoring study. Brain Topogr. 2012;25:73–96.

    Article  PubMed  Google Scholar 

  113. Brevers D, Cleeremans A, Goudriaan AE, Bechara A, Kornreich C, Verbanck P, et al. Decision making under ambiguity but not under risk is related to problem gambling severity. Psychiatry Res. 2012a;200:568–74.

    Article  PubMed  Google Scholar 

  114. Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: An fMRI Study. J Gambl Stud. 2011;28:623–36.

    Article  Google Scholar 

  115. Lejuez CW, Magidson JF, Mitchell SH, Sinha R, Stevens MC, De Wit H. Behavioral and biological indicators of impulsivity in the development of alcohol use, problems, and disorders. Alcohol Clin Exp Res. 2010;34:1334–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. White TL, Lejuez CW, de Wit H. Test-retest characteristics of the Balloon Analogue Risk Task (BART). Exp Clin Psychopharmacol. 2008;16:565–70.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Krmpotich T, Mikulich-Gilbertson S, Sakai J, Thompson L, Banich MT, Tanabe J. Impaired decision-making, higher impulsivity, and drug severity in substance dependence and pathological gambling. J Addict Med. 2015;9:273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cavedini P, Riboldi G, Keller R, D’Annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51:334–41.

    Article  PubMed  Google Scholar 

  119. Petry NM. Discounting of probabilistic rewards is associated with gambling abstinence in treatment-seeking pathological gamblers. J Abnorm Psychol. 2012;121:151–9.

    Article  PubMed  Google Scholar 

  120. Ballard K, Knutson B. Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neuroimage. 2009;45:143–50.

    Article  PubMed  Google Scholar 

  121. MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR. Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology. 2011;216:305–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Alessi SM, Petry NM. Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Process. 2003;64:345–54.

    Article  Google Scholar 

  123. Dixon MR, Marley J, Jacobs EA. Delay discounting by pathological gamblers. J Appl Behav Anal. 2003;36:449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Petry NM, Casarella T. Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug Alcohol Depend. 1999;56:25–32.

    Article  CAS  PubMed  Google Scholar 

  125. Dixon MR, Jacobs EA, Sanders S. Contextual control of delay discounting by pathological gamblers. J Appl Behav Anal. 2006;39:413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

    Article  CAS  PubMed  Google Scholar 

  127. Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatr Scand. 2010;122:326–33.

    Article  PubMed  Google Scholar 

  128. Linnet J, Møller A, Peterson E, Gjedde A, Doudet D. Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scand J Psychol. 2011;52:28–34.

    Article  PubMed  Google Scholar 

  129. van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology. 2009;34:2758–66.

    Article  CAS  PubMed  Google Scholar 

  130. Tanabe J, Reynolds J, Krmpotich T, Claus E, Thompson LL, Du YP, et al. Reduced neural tracking of prediction error in substance-dependent individuals. Am J Psychiatry. 2013;170:1356–63.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Piray P, Keramati MM, Dezfouli A, Lucas C, Mokri A. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach. Neural Comput. 2010;22:2334–68.

    Article  PubMed  Google Scholar 

  132. Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G. Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem. 2007;14:325–8.

    Article  PubMed  Google Scholar 

  133. Deserno L, Beck A, Huys QJM, Lorenz RC, Buchert R, Buchholz H-G, et al. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. Eur J Neurosci. 2015;41:477–86.

    Article  PubMed  Google Scholar 

  134. Jentsch JD, Olausson P, Garza RDL, Taylor JR. Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology. 2002;26:183–90.

    Article  CAS  PubMed  Google Scholar 

  135. de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2008;34:1027–38.

    Article  PubMed  Google Scholar 

  136. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23:473–500.

    Article  CAS  PubMed  Google Scholar 

  139. Campbell-Meiklejohn DK, Woolrich MW, Passingham RE, Rogers RD. Knowing when to stop: the brain mechanisms of chasing losses. Biol Psychiatry. 2008;63:293–300.

    Article  PubMed  Google Scholar 

  140. Worhunsky PD, Potenza MN, Rogers RD. Alterations in functional brain networks associated with loss-chasing in gambling disorder and cocaine-use disorder. Drug Alcohol Depend. 2017;178:363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  141. MacKillop J, Anderson EJ, Castelda BA, Mattson RE, Donovick PJ. Convergent validity of measures of cognitive distortions, impulsivity, and time perspective with pathological gambling. Psychol Addict Behav. 2006;20:75.

    Article  PubMed  Google Scholar 

  142. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  CAS  PubMed  Google Scholar 

  143. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8:844–58.

    Article  CAS  PubMed  Google Scholar 

  144. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001;2:119–28.

    Article  CAS  PubMed  Google Scholar 

  145. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–2.

    Article  CAS  PubMed  Google Scholar 

  146. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Purves D. Neuroscience. 4th ed. Sunderland, MA: Sinauer Associates, Inc.; 2008.

    Google Scholar 

  149. van Holst RJ, de Ruiter MB, van den Brink W, Veltman DJ, Goudriaan AE. A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend. 2012b;124:142–8.

    Article  PubMed  Google Scholar 

  150. Joutsa J, Saunavaara J, Parkkola R, Niemelä S, Kaasinen V. Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res Neuroimaging. 2011;194:340–6.

    Article  Google Scholar 

  151. Rahman AS, Xu J, Potenza MN. Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology. 2014;39:738–45.

    Article  PubMed  Google Scholar 

  152. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014;18:177–85.

    Article  PubMed  Google Scholar 

  153. Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci. 1996;16:4529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–52.

    Article  CAS  PubMed  Google Scholar 

  155. Eliasmith C. How to build a brain: a neural architecture for biological cognition. Oxford: Oxford University Press; 2013.

    Book  Google Scholar 

  156. Yip SW, Lacadie C, Xu J, Worhunsky PD, Fulbright RK, Constable RT, et al. Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry. 2013;14:129–38.

    Article  PubMed  Google Scholar 

  157. Koehler S, Ovadia-Caro S, van der ME, Villringer A, Heinz A, Romanczuk-Seiferth N, et al. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS One. 2013;8:e84565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tschernegg M, Crone JS, Eigenberger T, Schwartenbeck P, Fauth-Bühler M, Lemènager T, et al. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach. Front Hum Neurosci. 2013;7:625.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Potenza MN. How central is dopamine to pathological gambling or gambling disorder? Front Behav Neurosci. 2013b;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zack M, Poulos CX. Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol (Oxf). 2009;23:660–71.

    Article  CAS  Google Scholar 

  161. Heiden P, Heinz A, Romanczuk-Seiferth N. Pathological gambling in Parkinson’s disease: what are the risk factors and what is the role of impulsivity? Eur J Neurosci. 2017;45:67–72.

    Article  PubMed  Google Scholar 

  162. Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, Eimeren TV, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. 2009;132:1376–85.

    Article  CAS  PubMed  Google Scholar 

  163. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Heidbreder CA, Gardner EL, Xi Z-X, Thanos PK, Mugnaini M, Hagan JJ, et al. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Rev. 2005;49:77–105.

    Article  CAS  PubMed  Google Scholar 

  165. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996;20:1594–8.

    Article  CAS  PubMed  Google Scholar 

  166. Gelernter J, Goldman D, Risch N. The A1 allele at the D2 dopamine receptor gene and alcoholism: a reappraisal. JAMA. 1993;269:1673–7.

    Article  CAS  PubMed  Google Scholar 

  167. Gelernter J, Kranzler H. D2 dopamine receptor gene (DRD2) allele and haplotype frequencies in alcohol dependent and control subjects: no association with phenotype or severity of phenotype. Neuropsychopharmacology. 1999;20:640–9.

    Article  CAS  PubMed  Google Scholar 

  168. Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M. Genetically determined differences in learning from errors. Science. 2007;318:1642–5.

    Article  CAS  PubMed  Google Scholar 

  169. Uhl G, Blum K, Noble E, Smith S. Substance abuse vulnerability and D2 receptor genes. Trends Neurosci. 1993;16:83–8.

    Article  CAS  PubMed  Google Scholar 

  170. Cocker PJ, Le Foll B, Rogers RD, Winstanley CA. A selective role for dopamine D4 receptors in modulating reward expectancy in a rodent slot machine task. Biol Psychiatry. 2014;75:817–24.

    Article  CAS  PubMed  Google Scholar 

  171. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Curr Psychiatry Rep. 2010;12:418–25.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;1:876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Skosnik PD, Chatterton RT Jr, Swisher T, Park S. Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. Int J Psychophysiol. 2000;36:59–68.

    Article  CAS  PubMed  Google Scholar 

  174. Bullock SA, Potenza MN. Pathological gambling: neuropsychopharmacology and treatment. Curr Psychopharmacol. 2012;1:67–85.

    CAS  Google Scholar 

  175. Elman I, Becerra L, Tschibelu E, Yamamoto R, George E, Borsook D. Yohimbine-induced amygdala activation in pathological gamblers: a pilot study. PLoS One. 2012;7:e31118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Muller CP, Jacobs B. Handbook of the behavioral neurobiology of serotonin, vol. 21. London: Academic Press; 2009.

    Google Scholar 

  177. Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–16.

    Article  PubMed  Google Scholar 

  178. Dayan P, Huys QJM. Serotonin, inhibition, and negative mood. PLoS Comput Biol. 2008;4:e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nordin C, Eklundh T. Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectr. 1999;4:25–33.

    Article  CAS  PubMed  Google Scholar 

  180. Esch T, Stefano GB. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol Lett. 2004;25:235–51.

    CAS  PubMed  Google Scholar 

  181. Chiara GD, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U S A. 1992;89:2046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Heinz A, Reimold M, Wrase J, Hermann D, Croissant B, Mundle G, et al. Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry. 2005a;62:57–64.

    Article  PubMed  Google Scholar 

  184. Shinohara K, Yanagisawa A, Kagota Y, Gomi A, Nemoto K, Moriya E, et al. Physiological changes in Pachinko players; beta-endorphin, catecholamines, immune system substances and heart rate. Appl Hum Sci. 1999;18:37–42.

    Article  CAS  Google Scholar 

  185. Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econom J Econom Soc. 1979;47:263–91.

    Google Scholar 

  186. Strens M. A Bayesian framework for reinforcement learning. ICML. 2000:943–950. At http://web.eecs.utk.edu/~itamar/courses/ECE-692/paper1c.pdf.

  187. Herrnstein RJ. On the law of effect. J Exp Anal Behav. 1970;13:243–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS. Learning the value of information in an uncertain world. Nat Neurosci. 2007;10:1214–21.

    Article  CAS  PubMed  Google Scholar 

  189. Iglesias A, del Castillo MD, Serrano JI, Oliva J. A computational knowledge-based model for emulating human performance in the Iowa Gambling Task. Neural Netw. 2012;33:168–80.

    Article  CAS  PubMed  Google Scholar 

  190. Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature. 2001;411:305–9.

    Article  CAS  PubMed  Google Scholar 

  191. Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301:1104–7.

    Article  CAS  PubMed  Google Scholar 

  192. Joel D, Niv Y, Ruppin E. Actor–critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 2002;15:535–47.

    Article  PubMed  Google Scholar 

  193. Lim MSM, Jocham G, Hunt LT, Behrens TEJ, Rogers RD. Impulsivity and predictive control are associated with suboptimal action-selection and action-value learning in regular gamblers. Int Gambl Stud. 2015;15:489–505.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Shead NW, Hodgins DC. Probability discounting of gains and losses: implications for risk attitudes and impulsivity. J Exp Anal Behav. 2009;92:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Shead NW, Callan MJ, Hodgins DC. Probability discounting among gamblers: differences across problem gambling severity and affect-regulation expectancies. Personal Individ Differ. 2008;45:536–41.

    Article  Google Scholar 

  196. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Genauck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genauck, A., Romanczuk-Seiferth, N. (2019). The Neurobiology of Gambling Disorder: Neuroscientific Studies and Computational Perspectives. In: Heinz, A., Romanczuk-Seiferth, N., Potenza, M. (eds) Gambling Disorder. Springer, Cham. https://doi.org/10.1007/978-3-030-03060-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03060-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03058-2

  • Online ISBN: 978-3-030-03060-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics