The Neurobiology of Gambling Disorder: Neuroscientific Studies and Computational Perspectives

  • Alexander GenauckEmail author
  • Nina Romanczuk-Seiferth


This chapter gives an overview on neurobehavioral findings concerning gambling disorder (GD). We classify studies into classical and computational psychiatry studies and into three categories related to different symptom clusters: loss of control, craving, and neglect of other areas in life. Studies using classical analyses are those that set into relationship measured random variables by estimating their respective means, variances, and covariances. Computational psychiatry studies and computational analyses are those that explicitly assume one or several cognitive-computational processes responsible for generating the data. Analyses could involve reinforcement learning models fit to behavioral choice data or neural network models fit to brain data. Computational psychiatry aims at taking a closer look at processes underlying psychological disorders. Note that we will also use a computational psychiatry perspective when reporting on the classical neurobiological GD studies here. This means we will review primary research articles with respect to computationally relevant processes such as cue reactivity, response inhibition, gain and loss processing, uncertainty, and delay processing as well as learning from reward and punishment.


Gambling disorder Pathological gambling Computational psychiatry Neuroimaging Decision-making Addiction 


  1. 1.
    Potenza MN. Neurobiology of gambling behaviors. Curr Opin Neurobiol. 2013a;23:660–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Quester S, Romanczuk-Seiferth N. Brain imaging in gambling disorder. Curr Addict Rep. 2015;2:220–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Romanczuk-Seiferth N, van den Brink W, Goudriaan AE. From symptoms to neurobiology: pathological gambling in the light of the new classification in DSM-5. Neuropsychobiology. 2014;70:95–102.CrossRefGoogle Scholar
  4. 4.
    Stephan KE, Iglesias S, Heinzle J, Diaconescu AO. Translational perspectives for computational neuroimaging. Neuron. 2015;87:716–32.CrossRefGoogle Scholar
  5. 5.
    Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.CrossRefGoogle Scholar
  6. 6.
    Sutton RS. Introduction to reinforcement learning. Cambridge, MA: MIT Press; 1998.CrossRefGoogle Scholar
  7. 7.
    Basten U, Biele G, Heekeren HR, Fiebach CJ. How the brain integrates costs and benefits during decision making. Proc Natl Acad Sci. 2010;107:21767–72.CrossRefGoogle Scholar
  8. 8.
    Bischof A, Meyer C, Bischof G, John U, Wurst FM, Thon N, et al. Suicidal events among pathological gamblers: the role of comorbidity of axis I and axis II disorders. Psychiatry Res. 2015;225:413–9.CrossRefGoogle Scholar
  9. 9.
    Bundeszentrale für gesundheitliche Aufklärung. Glücksspielverhalten und Glücksspielsucht in Deutschland. Ergebnisse des Surveys 2013 und Trends. Bundeszentrale Für Gesundheitliche Aufklär. 2014.Google Scholar
  10. 10.
    Meyer C, Bischof A, Westram A, Jeske C, de Brito S, Glorius S, et al. The “Pathological Gambling and Epidemiology” (PAGE) study program: design and fieldwork. Int J Methods Psychiatr Res. 2015;24:11–31.CrossRefGoogle Scholar
  11. 11.
    Raylu N, Oei TPS. Pathological gambling: a comprehensive review. Clin Psychol Rev. 2002;22:1009–61.CrossRefGoogle Scholar
  12. 12.
    Grinols EL, Mustard DB. Business profitability versus social profitability: evaluating industries with externalities, the case of casinos. Manag Decis Econ. 2001;22:143–62.CrossRefGoogle Scholar
  13. 13.
    Ladouceur R, Boisvert J-M, Pépin M, Loranger M, Sylvain C. Social cost of pathological gambling. J Gambl Stud. 1994;10:399–409.CrossRefGoogle Scholar
  14. 14.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association, DSM-5 task force. Arlington, VA: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  15. 15.
    Clark L. Disordered gambling: the evolving concept of behavioral addiction. Ann N Y Acad Sci. 2014;1327:46–61.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clark L, Averbeck B, Payer D, Sescousse G, Winstanley CA, Xue G. Pathological choice: the neuroscience of gambling and gambling addiction. J Neurosci. 2013;33:17617–23.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fauth-Bühler M, Mann K, Potenza MN. Pathological gambling: a review of the neurobiological evidence relevant for its classification as an addictive disorder. Addict Biol. 2017;22:885–97.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology. 2012;219:469–90.CrossRefGoogle Scholar
  19. 19.
    Petry NM, Blanco C, Auriacombe M, Borges G, Bucholz K, Crowley TJ, et al. An overview of and rationale for changes proposed for pathological gambling in DSM-5. J Gambl Stud. 2014;30:493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66:734–42.CrossRefGoogle Scholar
  21. 21.
    Beck A, Wüstenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients relapse in alcohol-dependent patients. Arch Gen Psychiatry. 2012;69:842–52.CrossRefGoogle Scholar
  22. 22.
    Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90(Suppl 1):S85–91.CrossRefGoogle Scholar
  23. 23.
    Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C] raclopride. Addiction. 2013;108:953–63.CrossRefGoogle Scholar
  24. 24.
    Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2016;21:719–31.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gelskov SV, Madsen KH, Ramsøy TZ, Siebner HR. Aberrant neural signatures of decision-making: pathological gamblers display cortico-striatal hypersensitivity to extreme gambles. Neuroimage. 2016;128:342–52.CrossRefGoogle Scholar
  26. 26.
    Heinz A, Siessmeier T, Wrase J, Buchholz HG, Gründer G, Kumakura Y, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry. 2005b;162:1515–20.CrossRefGoogle Scholar
  27. 27.
    Joutsa J, Johansson J, Niemelä S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage. 2012;60:1992–9.CrossRefGoogle Scholar
  28. 28.
    Koehler S, Hasselmann E, Wüstenberg T, Heinz A, Romanczuk-Seiferth N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. 2015;220:469–77.CrossRefGoogle Scholar
  29. 29.
    Park SQ, Kahnt T, Beck A, Cohen MX, Dolan RJ, Wrase J, et al. Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci. 2010;30:7749–53.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Romanczuk-Seiferth N, Koehler S, Dreesen C, Wüstenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20:557–69.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci. 2008;28:14311–9.CrossRefGoogle Scholar
  32. 32.
    Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage. 2007;35:787–94.CrossRefGoogle Scholar
  33. 33.
    Genauck A, Huys QJ, Heinz A, Rapp MA. Pawlowsch-Instrumentelle Transfereffekte bei Alkoholabhängigkeit. SUCHT. 2013;59:215–23.CrossRefGoogle Scholar
  34. 34.
    Huys QJM, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, et al. Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Comput Biol. 2011;7:e1002028.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huys QJM, Deserno L, Obermayer K, Schlagenhauf F, Heinz A. Model-free temporal-difference learning and dopamine in alcohol dependence: examining concepts from theory and animals in human imaging. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016a;1:401–10.CrossRefGoogle Scholar
  36. 36.
    Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi A-H, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Decis Neurosci. 2014;5:1450.Google Scholar
  37. 37.
    Sebold M, Schad DJ, Nebe S, Garbusow M, Jünger E, Kroemer NB, et al. Don’t think, just feel the music: individuals with strong Pavlovian-to-instrumental transfer effects rely less on model-based reinforcement learning. J Cogn Neurosci. 2016;28:985–95.CrossRefGoogle Scholar
  38. 38.
    Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016b;19:404–13.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Paulus MP, Huys QJM, Maia TV. A roadmap for the development of applied computational psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:386–92.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96:103–14.CrossRefGoogle Scholar
  42. 42.
    Reynolds B, Ortengren A, Richards JB, de Wit H. Dimensions of impulsive behavior: Personality and behavioral measures. Personal Individ Differ. 2006;40:305–15.CrossRefGoogle Scholar
  43. 43.
    Whiteside SP, Lynam DR. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. Personal Individ Differ. 2001;30:669–89.CrossRefGoogle Scholar
  44. 44.
    Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40:1675–89.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bechara A, Dolan S, Hindes A. Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia. 2002;40:1690–705.CrossRefGoogle Scholar
  46. 46.
    Clark L. Decision-making during gambling: an integration of cognitive and psychobiological approaches. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:319–30.CrossRefGoogle Scholar
  47. 47.
    Rangel A, Camerer C, Montague PR. A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci. 2008;9:545–56.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Reiter AM, Heinze H-J, Schlagenhauf F, Deserno L. Impaired flexible reward-based decision-making in binge eating disorder: evidence from computational modeling and functional neuroimaging. Neuropsychopharmacology. 2017;42:628–37.CrossRefGoogle Scholar
  49. 49.
    Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86.CrossRefGoogle Scholar
  50. 50.
    Goudriaan AE, Oosterlaan J, De Beurs E, Van Den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006b;101:534–47.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moccia L, Pettorruso M, De Crescenzo F, De Risio L, di Nuzzo L, Martinotti G, et al. Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev. 2017;78:104–16.CrossRefGoogle Scholar
  52. 52.
    Goudriaan AE, Oosterlaan J, Beurs ED, Brink WVD. The role of self-reported impulsivity and reward sensitivity versus neurocognitive measures of disinhibition and decision-making in the prediction of relapse in pathological gamblers. Psychol Med. 2008;38:41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cogn Brain Res. 2005;23:137–51.CrossRefGoogle Scholar
  54. 54.
    Kertzman S, Lowengrub K, Aizer A, Vainder M, Kotler M, Dannon PN. Go–no-go performance in pathological gamblers. Psychiatry Res. 2008;161:1–10.CrossRefGoogle Scholar
  55. 55.
    van Holst RJ, van Holstein M, van den Brink W, Veltman DJ, Goudriaan AE. Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One. 2012a;7:e30909.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW. A neural computational model of incentive salience. PLoS Comput Biol. 2009;5:e1000437.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kertzman S, Lowengrub K, Aizer A, Nahum ZB, Kotler M, Dannon PN. Stroop performance in pathological gamblers. Psychiatry Res. 2006;142:1–10.CrossRefGoogle Scholar
  58. 58.
    McCusker CG. Cognitive biases and addiction: an evolution in theory and method. Addiction. 2001;96:47–56.CrossRefGoogle Scholar
  59. 59.
    McCusker CG, Gettings B. Automaticity of cognitive biases in addictive behaviours: further evidence with gamblers. Br J Clin Psychol. 1997;36:543–54.CrossRefGoogle Scholar
  60. 60.
    Potenza MN, Steinberg MA, Skudlarski P, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2003;60:828–36.CrossRefGoogle Scholar
  61. 61.
    de Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug Alcohol Depend. 2012;121:81–9.CrossRefGoogle Scholar
  62. 62.
    Field M, Munafò MR, Franken IHA. A meta-analytic investigation of the relationship between attentional bias and subjective craving in substance abuse. Psychol Bull. 2009;135:589–607.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research. Addiction. 1999;94:327–40.CrossRefGoogle Scholar
  64. 64.
    Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2011;70:785–93.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18:121–33.CrossRefGoogle Scholar
  66. 66.
    Balodis IM, Lacadie CM, Potenza MN. A preliminary study of the neural correlates of the intensities of self-reported gambling urges and emotions in men with pathological gambling. J Gambl Stud. 2012b;28:493–513.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Potenza MN. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc B Biol Sci. 2008;363:3181–9.CrossRefGoogle Scholar
  68. 68.
    Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58:787–95.CrossRefGoogle Scholar
  70. 70.
    Wölfling K, Mörsen CP, Duven E, Albrecht U, Grüsser SM, Flor H. To gamble or not to gamble: at risk for craving and relapse--learned motivated attention in pathological gambling. Biol Psychol. 2011;87:275–81.CrossRefGoogle Scholar
  71. 71.
    Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, Goldstone AP, et al. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7:e992.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kushner MG, Abrams K, Donahue C, Thuras P, Frost R, Kim SW. Urge to gamble in problem gamblers exposed to a casino environment. J Gambl Stud Co-Spons Natl Counc Probl Gambl Inst Study Gambl Commer Gaming. 2007;23:121–32.Google Scholar
  73. 73.
    van Holst RJ, Veltman DJ, van den Brink W, Goudriaan AE. Right on cue? Striatal reactivity in problem gamblers. Biol Psychiatry. 2012c;72:e23–4.CrossRefGoogle Scholar
  74. 74.
    van Holst RJ, Veltman DJ, Büchel C, van den Brink W, Goudriaan AE. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry. 2012d;71:741–8.CrossRefGoogle Scholar
  75. 75.
    Leyton M, Vezina P. On cue: striatal ups and downs in addictions. Biol Psychiatry. 2012;72:e21–2.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Miedl SF, Büchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34:4750–5.CrossRefGoogle Scholar
  77. 77.
    Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. The reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. J Psychoactive Drugs. 2000;32:1–112.CrossRefGoogle Scholar
  78. 78.
    Sescousse G, Barbalat G, Domenech P, Dreher J-C. Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain. 2013;136:2527–38.CrossRefGoogle Scholar
  79. 79.
    Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12:20–7.CrossRefGoogle Scholar
  80. 80.
    Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1–25.CrossRefGoogle Scholar
  81. 81.
    Berridge KC, Robinson TE. The mind of an addicted brain: neural sensitization of wanting versus liking. Curr Dir Psychol Sci. 1995;4:71–6.CrossRefGoogle Scholar
  82. 82.
    Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9:65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.CrossRefGoogle Scholar
  84. 84.
    Knutson B, Adams CM, Fong GW, Hommer D, et al. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:1–5.CrossRefGoogle Scholar
  85. 85.
    Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012a;71:749–57.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Choi J-S, Shin Y-C, Jung WH, Jang JH, Kang D-H, Choi C-H, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One. 2012;7:e45938.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tsurumi K, Kawada R, Yokoyama N, Sugihara G, Sawamoto N, Aso T, et al. Insular activation during reward anticipation reflects duration of illness in abstinent pathological gamblers. Front Psychol. 2014;5:1013.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Genauck A, Quester S, Wüstenberg T, Mörsen C, Heinz A, Romanczuk-Seiferth N. Reduced loss aversion in pathological gambling and alcohol dependence is associated with differential alterations in amygdala and prefrontal functioning. Sci Rep. 2017;7:16306.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tom SM, Fox CR, Trepel C, Poldrack RA. The neural basis of loss aversion in decision-making under risk. Science. 2007;315:515–8.CrossRefGoogle Scholar
  91. 91.
    Fauth-Bühler M, Zois E, Vollstädt-Klein S, Lemenager T, Beutel M, Mann K. Insula and striatum activity in effort-related monetary reward processing in gambling disorder: The role of depressive symptomatology. Neuroimage Clin. 2014;6:243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8.CrossRefGoogle Scholar
  93. 93.
    Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res Neuroimaging. 2010;181:165–73.CrossRefGoogle Scholar
  94. 94.
    Habib R, Dixon MR. Neurobehavioral evidence for the “Near-Miss” effect in pathological gamblers. J Exp Anal Behav. 2010;93:313–28.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug Alcohol Depend. 2006a;84:231–9.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28:1276–86.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Brevers D, Cleeremans A, Verbruggen F, Bechara A, Kornreich C, Verbanck P, et al. Impulsive action but not impulsive choice determines problem gambling severity. PLoS One. 2012b;7:e50647.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Giorgetta C, Grecucci A, Rattin A, Guerreschi C, Sanfey AG, Bonini N. To play or not to play: a personal dilemma in pathological gambling. Psychiatry Res. 2014;219:562–9.CrossRefGoogle Scholar
  99. 99.
    Lorains FK, Dowling NA, Enticott PG, Bradshaw JL, Trueblood JS, Stout JC. Strategic and non-strategic problem gamblers differ on decision-making under risk and ambiguity. Addiction. 2014;109:1128–37.CrossRefGoogle Scholar
  100. 100.
    Takeuchi H, Kawada R, Tsurumi K, Yokoyama N, Takemura A, Murao T, et al. Heterogeneity of loss aversion in pathological gambling. J Gambl Stud. 2016;32:1143–54.CrossRefGoogle Scholar
  101. 101.
    Barkley-Levenson EE, Van Leijenhorst L, Galván A. Behavioral and neural correlates of loss aversion and risk avoidance in adolescents and adults. Dev Cogn Neurosci. 2013;3:72–83.CrossRefGoogle Scholar
  102. 102.
    Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, et al. The functional and structural neural basis of individual differences in loss aversion. J Neurosci. 2013;33:14307–17.CrossRefGoogle Scholar
  103. 103.
    Litt A, Eliasmith C, Thagard P. Neural affective decision theory: choices, brains, and emotions. Cogn Syst Res. 2008;9:252–73.CrossRefGoogle Scholar
  104. 104.
    Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain. 2008;131:1311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kassinove JI, Schare ML. Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychol Addict Behav. 2001;15:155–8.CrossRefGoogle Scholar
  106. 106.
    Parke J, Griffiths M. Gambling addiction and the evolution of the “near miss”. Addict Res Theory. 2004;12:407–11.CrossRefGoogle Scholar
  107. 107.
    Reid RL. The psychology of the near miss. J Gambl Behav. 1986;2:32–9.CrossRefGoogle Scholar
  108. 108.
    Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61:481–90.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30:6180–7.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Solomon RL, Kamin LJ, Wynne LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnorm Psychol. 1953;48:291–302.PubMedGoogle Scholar
  111. 111.
    Platt ML, Huettel SA. Risky business: the neuroeconomics of decision making under uncertainty. Nat Neurosci. 2008;11:398–403.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Minati L, Grisoli M, Franceschetti S, Epifani F, Granvillano A, Medford N, et al. Neural signatures of economic parameters during decision-making: a functional MRI (fMRI), electroencephalography (EEG) and autonomic monitoring study. Brain Topogr. 2012;25:73–96.CrossRefGoogle Scholar
  113. 113.
    Brevers D, Cleeremans A, Goudriaan AE, Bechara A, Kornreich C, Verbanck P, et al. Decision making under ambiguity but not under risk is related to problem gambling severity. Psychiatry Res. 2012a;200:568–74.CrossRefGoogle Scholar
  114. 114.
    Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: An fMRI Study. J Gambl Stud. 2011;28:623–36.CrossRefGoogle Scholar
  115. 115.
    Lejuez CW, Magidson JF, Mitchell SH, Sinha R, Stevens MC, De Wit H. Behavioral and biological indicators of impulsivity in the development of alcohol use, problems, and disorders. Alcohol Clin Exp Res. 2010;34:1334–45.PubMedPubMedCentralGoogle Scholar
  116. 116.
    White TL, Lejuez CW, de Wit H. Test-retest characteristics of the Balloon Analogue Risk Task (BART). Exp Clin Psychopharmacol. 2008;16:565–70.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Krmpotich T, Mikulich-Gilbertson S, Sakai J, Thompson L, Banich MT, Tanabe J. Impaired decision-making, higher impulsivity, and drug severity in substance dependence and pathological gambling. J Addict Med. 2015;9:273–80.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Cavedini P, Riboldi G, Keller R, D’Annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51:334–41.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Petry NM. Discounting of probabilistic rewards is associated with gambling abstinence in treatment-seeking pathological gamblers. J Abnorm Psychol. 2012;121:151–9.CrossRefGoogle Scholar
  120. 120.
    Ballard K, Knutson B. Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neuroimage. 2009;45:143–50.CrossRefGoogle Scholar
  121. 121.
    MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR. Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology. 2011;216:305–21.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Alessi SM, Petry NM. Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Process. 2003;64:345–54.CrossRefGoogle Scholar
  123. 123.
    Dixon MR, Marley J, Jacobs EA. Delay discounting by pathological gamblers. J Appl Behav Anal. 2003;36:449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Petry NM, Casarella T. Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug Alcohol Depend. 1999;56:25–32.CrossRefGoogle Scholar
  125. 125.
    Dixon MR, Jacobs EA, Sanders S. Contextual control of delay discounting by pathological gamblers. J Appl Behav Anal. 2006;39:413–22.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.CrossRefGoogle Scholar
  127. 127.
    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatr Scand. 2010;122:326–33.CrossRefGoogle Scholar
  128. 128.
    Linnet J, Møller A, Peterson E, Gjedde A, Doudet D. Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scand J Psychol. 2011;52:28–34.CrossRefGoogle Scholar
  129. 129.
    van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology. 2009;34:2758–66.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tanabe J, Reynolds J, Krmpotich T, Claus E, Thompson LL, Du YP, et al. Reduced neural tracking of prediction error in substance-dependent individuals. Am J Psychiatry. 2013;170:1356–63.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Piray P, Keramati MM, Dezfouli A, Lucas C, Mokri A. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach. Neural Comput. 2010;22:2334–68.CrossRefGoogle Scholar
  132. 132.
    Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G. Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem. 2007;14:325–8.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Deserno L, Beck A, Huys QJM, Lorenz RC, Buchert R, Buchholz H-G, et al. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. Eur J Neurosci. 2015;41:477–86.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Jentsch JD, Olausson P, Garza RDL, Taylor JR. Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology. 2002;26:183–90.CrossRefGoogle Scholar
  135. 135.
    de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2008;34:1027–38.CrossRefGoogle Scholar
  136. 136.
    Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Gläscher J, Daw N, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23:473–500.CrossRefGoogle Scholar
  139. 139.
    Campbell-Meiklejohn DK, Woolrich MW, Passingham RE, Rogers RD. Knowing when to stop: the brain mechanisms of chasing losses. Biol Psychiatry. 2008;63:293–300.CrossRefGoogle Scholar
  140. 140.
    Worhunsky PD, Potenza MN, Rogers RD. Alterations in functional brain networks associated with loss-chasing in gambling disorder and cocaine-use disorder. Drug Alcohol Depend. 2017;178:363–71.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    MacKillop J, Anderson EJ, Castelda BA, Mattson RE, Donovick PJ. Convergent validity of measures of cognitive distortions, impulsivity, and time perspective with pathological gambling. Psychol Addict Behav. 2006;20:75.CrossRefGoogle Scholar
  142. 142.
    Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.CrossRefGoogle Scholar
  143. 143.
    Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8:844–58.CrossRefGoogle Scholar
  144. 144.
    Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001;2:119–28.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–2.CrossRefGoogle Scholar
  146. 146.
    Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Purves D. Neuroscience. 4th ed. Sunderland, MA: Sinauer Associates, Inc.; 2008.Google Scholar
  149. 149.
    van Holst RJ, de Ruiter MB, van den Brink W, Veltman DJ, Goudriaan AE. A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend. 2012b;124:142–8.CrossRefGoogle Scholar
  150. 150.
    Joutsa J, Saunavaara J, Parkkola R, Niemelä S, Kaasinen V. Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res Neuroimaging. 2011;194:340–6.CrossRefGoogle Scholar
  151. 151.
    Rahman AS, Xu J, Potenza MN. Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology. 2014;39:738–45.CrossRefGoogle Scholar
  152. 152.
    Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014;18:177–85.CrossRefGoogle Scholar
  153. 153.
    Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci. 1996;16:4529–35.CrossRefGoogle Scholar
  154. 154.
    Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–52.CrossRefGoogle Scholar
  155. 155.
    Eliasmith C. How to build a brain: a neural architecture for biological cognition. Oxford: Oxford University Press; 2013.CrossRefGoogle Scholar
  156. 156.
    Yip SW, Lacadie C, Xu J, Worhunsky PD, Fulbright RK, Constable RT, et al. Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry. 2013;14:129–38.CrossRefGoogle Scholar
  157. 157.
    Koehler S, Ovadia-Caro S, van der ME, Villringer A, Heinz A, Romanczuk-Seiferth N, et al. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS One. 2013;8:e84565.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Tschernegg M, Crone JS, Eigenberger T, Schwartenbeck P, Fauth-Bühler M, Lemènager T, et al. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach. Front Hum Neurosci. 2013;7:625.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Potenza MN. How central is dopamine to pathological gambling or gambling disorder? Front Behav Neurosci. 2013b;7:206.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Zack M, Poulos CX. Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol (Oxf). 2009;23:660–71.CrossRefGoogle Scholar
  161. 161.
    Heiden P, Heinz A, Romanczuk-Seiferth N. Pathological gambling in Parkinson’s disease: what are the risk factors and what is the role of impulsivity? Eur J Neurosci. 2017;45:67–72.CrossRefGoogle Scholar
  162. 162.
    Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, Eimeren TV, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. 2009;132:1376–85.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Heidbreder CA, Gardner EL, Xi Z-X, Thanos PK, Mugnaini M, Hagan JJ, et al. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Rev. 2005;49:77–105.CrossRefGoogle Scholar
  165. 165.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996;20:1594–8.CrossRefGoogle Scholar
  166. 166.
    Gelernter J, Goldman D, Risch N. The A1 allele at the D2 dopamine receptor gene and alcoholism: a reappraisal. JAMA. 1993;269:1673–7.CrossRefGoogle Scholar
  167. 167.
    Gelernter J, Kranzler H. D2 dopamine receptor gene (DRD2) allele and haplotype frequencies in alcohol dependent and control subjects: no association with phenotype or severity of phenotype. Neuropsychopharmacology. 1999;20:640–9.CrossRefGoogle Scholar
  168. 168.
    Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M. Genetically determined differences in learning from errors. Science. 2007;318:1642–5.CrossRefGoogle Scholar
  169. 169.
    Uhl G, Blum K, Noble E, Smith S. Substance abuse vulnerability and D2 receptor genes. Trends Neurosci. 1993;16:83–8.CrossRefGoogle Scholar
  170. 170.
    Cocker PJ, Le Foll B, Rogers RD, Winstanley CA. A selective role for dopamine D4 receptors in modulating reward expectancy in a rodent slot machine task. Biol Psychiatry. 2014;75:817–24.CrossRefGoogle Scholar
  171. 171.
    van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Curr Psychiatry Rep. 2010;12:418–25.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;1:876–86.CrossRefGoogle Scholar
  173. 173.
    Skosnik PD, Chatterton RT Jr, Swisher T, Park S. Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. Int J Psychophysiol. 2000;36:59–68.CrossRefGoogle Scholar
  174. 174.
    Bullock SA, Potenza MN. Pathological gambling: neuropsychopharmacology and treatment. Curr Psychopharmacol. 2012;1:67–85.Google Scholar
  175. 175.
    Elman I, Becerra L, Tschibelu E, Yamamoto R, George E, Borsook D. Yohimbine-induced amygdala activation in pathological gamblers: a pilot study. PLoS One. 2012;7:e31118.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Muller CP, Jacobs B. Handbook of the behavioral neurobiology of serotonin, vol. 21. London: Academic Press; 2009.Google Scholar
  177. 177.
    Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–16.CrossRefGoogle Scholar
  178. 178.
    Dayan P, Huys QJM. Serotonin, inhibition, and negative mood. PLoS Comput Biol. 2008;4:e4.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Nordin C, Eklundh T. Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectr. 1999;4:25–33.CrossRefGoogle Scholar
  180. 180.
    Esch T, Stefano GB. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol Lett. 2004;25:235–51.PubMedGoogle Scholar
  181. 181.
    Chiara GD, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U S A. 1992;89:2046–50.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Heinz A, Reimold M, Wrase J, Hermann D, Croissant B, Mundle G, et al. Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry. 2005a;62:57–64.CrossRefGoogle Scholar
  184. 184.
    Shinohara K, Yanagisawa A, Kagota Y, Gomi A, Nemoto K, Moriya E, et al. Physiological changes in Pachinko players; beta-endorphin, catecholamines, immune system substances and heart rate. Appl Hum Sci. 1999;18:37–42.CrossRefGoogle Scholar
  185. 185.
    Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econom J Econom Soc. 1979;47:263–91.Google Scholar
  186. 186.
    Strens M. A Bayesian framework for reinforcement learning. ICML. 2000:943–950. At
  187. 187.
    Herrnstein RJ. On the law of effect. J Exp Anal Behav. 1970;13:243–66.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS. Learning the value of information in an uncertain world. Nat Neurosci. 2007;10:1214–21.CrossRefGoogle Scholar
  189. 189.
    Iglesias A, del Castillo MD, Serrano JI, Oliva J. A computational knowledge-based model for emulating human performance in the Iowa Gambling Task. Neural Netw. 2012;33:168–80.CrossRefGoogle Scholar
  190. 190.
    Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature. 2001;411:305–9.CrossRefGoogle Scholar
  191. 191.
    Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301:1104–7.CrossRefGoogle Scholar
  192. 192.
    Joel D, Niv Y, Ruppin E. Actor–critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 2002;15:535–47.CrossRefGoogle Scholar
  193. 193.
    Lim MSM, Jocham G, Hunt LT, Behrens TEJ, Rogers RD. Impulsivity and predictive control are associated with suboptimal action-selection and action-value learning in regular gamblers. Int Gambl Stud. 2015;15:489–505.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Shead NW, Hodgins DC. Probability discounting of gains and losses: implications for risk attitudes and impulsivity. J Exp Anal Behav. 2009;92:1–16.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Shead NW, Callan MJ, Hodgins DC. Probability discounting among gamblers: differences across problem gambling severity and affect-regulation expectancies. Personal Individ Differ. 2008;45:536–41.CrossRefGoogle Scholar
  196. 196.
    Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyCharité—Universitätsmedizin BerlinBerlinGermany
  2. 2.Bernstein Center for Computational Neuroscience BerlinBerlinGermany

Personalised recommendations