What Is an Addiction?

  • Andreas HeinzEmail author
  • Anne Beck


This chapter addresses the question when behavioural problems such as gambling disorder should be considered to be an addiction. Current classification systems will be discussed and current neurobiological findings regarding the correlates of addictive behavior will be compared to key diagnostic symptoms. Finally, key theories about addiction will be compared with respect to their clinical implications.


  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed., text rev. edn. Washington, DC; 2000.Google Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). Washington, DC and London: American Psychiatric Publishing; 2013.Google Scholar
  3. 3.
    World Health Organization. ICD-10, international statistical classification of diseases and related health problems. 10th revision edn. Genf; 2013.Google Scholar
  4. 4.
    Heinz A, Friedel E. DSM-5: important changes in the field of addictive diseases. Nervenarzt. 2014;85(5):571–7.PubMedGoogle Scholar
  5. 5.
    Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.PubMedGoogle Scholar
  6. 6.
    Romanczuk-Seiferth N, Koehler S, Dreesen C, Wustenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20(3):557–69.PubMedGoogle Scholar
  7. 7.
    Romanczuk-Seiferth N, van den Brink W, Goudriaan AE. From symptoms to neurobiology: pathological gambling in the light of the new classification in DSM-5. Neuropsychobiology. 2014;70(2):95–102.PubMedGoogle Scholar
  8. 8.
    Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10(3):318–25.PubMedGoogle Scholar
  9. 9.
    Edwards G. Withdrawal symptoms and alcohol dependence: fruitful mysteries. Br J Addict. 1990;85(4):447–61.PubMedGoogle Scholar
  10. 10.
    Krystal JH, Staley J, Mason G, Petrakis IL, Kaufman J, Harris RA, Gelernter J, Lappalainen J. Gamma-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch Gen Psychiatry. 2006;63(9):957–68.PubMedGoogle Scholar
  11. 11.
    Clapp P, Bhave SV, Hoffman PL. How adaptation of the brain to alcohol leads to dependence: a pharmacological perspective. Alcohol Res Health. 2008;31(4):310–39.PubMedPubMedCentralGoogle Scholar
  12. 12.
    De Witte P. Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addict Behav. 2004;29(7):1325–39.PubMedGoogle Scholar
  13. 13.
    Heinz A, Beck A, Wrase J, Mohr J, Obermayer K, Gallinat J, Puls I. Neurotransmitter systems in alcohol dependence. Pharmacopsychiatry. 2009;42(Suppl 1):S95–S101.PubMedGoogle Scholar
  14. 14.
    Akaoka H, Aston-Jones G. Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci. 1991;11(12):3830–9.PubMedGoogle Scholar
  15. 15.
    Maldonado R, Stinus L, Gold LH, Koob GF. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther. 1992;261(2):669–77.PubMedGoogle Scholar
  16. 16.
    Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ. Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci. 1990;10(7):2308–17.PubMedGoogle Scholar
  17. 17.
    Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.PubMedGoogle Scholar
  18. 18.
    Tsai G, Gastfriend DR, Coyle JT. The glutamatergic basis of human alcoholism. Am J Psychiatry. 1995;152(3):332–40.PubMedGoogle Scholar
  19. 19.
    Chamberlain SR, Lochner C, Stein DJ, Goudriaan AE, van Holst RJ, Zohar J, Grant JE. Behavioural addiction—a rising tide? Eur Neuropsychopharmacol. 2016;26(5):841–55.PubMedGoogle Scholar
  20. 20.
    Grusser SM, Poppelreuter S, Heinz A, Albrecht U, Sass H. Behavioural addiction: an independent diagnostic category? Nervenarzt. 2007;78(9):997–1002.PubMedGoogle Scholar
  21. 21.
    De Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol. 2009;14(1):22–31.PubMedGoogle Scholar
  22. 22.
    Rupp CI, Beck JK, Heinz A, Kemmler G, Manz S, Tempel K, Fleischhacker WW. Impulsivity and alcohol dependence treatment completion: is there a neurocognitive risk factor at treatment entry? Alcohol Clin Exp Res. 2016;40(1):152–60.PubMedGoogle Scholar
  23. 23.
    Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron. 2001;30(2):619–39.PubMedGoogle Scholar
  24. 24.
    Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21(16):RC159.PubMedGoogle Scholar
  25. 25.
    Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;7(1):69–76.PubMedGoogle Scholar
  26. 26.
    Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):5274–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fuchs H, Nagel J, Hauber W. Effects of physiological and pharmacological stimuli on dopamine release in the rat globus pallidus. Neurochem Int. 2005;47(7):474–81.PubMedGoogle Scholar
  28. 28.
    Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985;348(1):201–3.PubMedGoogle Scholar
  29. 29.
    Martel P, Fantino M. Influence of the amount of food ingested on mesolimbic dopaminergic system activity: a microdialysis study. Pharmacol Biochem Behav. 1996;55(2):297–302.PubMedGoogle Scholar
  30. 30.
    Flagel SB, Robinson TE, Clark JJ, Clinton SM, Watson SJ, Seeman P, Phillips PE, Akil H. An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology. 2010;35(2):388–400.PubMedGoogle Scholar
  31. 31.
    Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.PubMedGoogle Scholar
  32. 32.
    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.PubMedGoogle Scholar
  33. 33.
    Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H, Patenaude B, Ramakrishnan C, Kalanithi P, Etkin A, Knutson B, Glover GH, Deisseroth K. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. 2016;351(6268):aac9698.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71(8):749–57.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Balodis IM, Potenza MN. Imaging the gambling brain. Int Rev Neurobiol. 2016;129:111–24.PubMedGoogle Scholar
  36. 36.
    Quester S, Romanczuk-Seiferth N. Brain imaging in gambling disorder. Curr Addict Rep. 2015;2(3):220–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8(2):147–8.PubMedGoogle Scholar
  38. 38.
    Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, Schmack K, Hägele C, Knutson B, Heinz A, Wrase J. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66(8):734–42.PubMedGoogle Scholar
  39. 39.
    Hagele C, Schlagenhauf F, Rapp M, Sterzer P, Beck A, Bermpohl F, Stoy M, Strohle A, Wittchen HU, Dolan RJ, Heinz A. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology. 2015;232(2):331–41.PubMedGoogle Scholar
  40. 40.
    Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, Beck A, Strohle A, Juckel G, Knutson B, Heinz A. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage. 2007;35(2):787–94.PubMedGoogle Scholar
  41. 41.
    Heinz A, Siessmeier T, Wrase J, Buchholz HG, Grunder G, Kumakura Y, Cumming P, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatr. 2005;162(8):1515–20.PubMedGoogle Scholar
  42. 42.
    Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9.PubMedGoogle Scholar
  43. 43.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Alexoff D, Logan J, Jayne M, Wong C, Tomasi D. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A. 2014;111(30):E3149–56.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wiers CE, Stelzel C, Park SQ, Gawron CK, Ludwig VU, Gutwinski S, Heinz A, Lindenmeyer J, Wiers RW, Walter H, Bermpohl F. Neural correlates of alcohol-approach bias in alcohol addiction: the spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology. 2014;39(3):688–97.PubMedGoogle Scholar
  45. 45.
    Wiers RW, Eberl C, Rinck M, Becker ES, Lindenmeyer J. Retraining automatic action tendencies changes alcoholic patients’ approach bias for alcohol and improves treatment outcome. Psychol Sci. 2011;22(4):490–7.PubMedGoogle Scholar
  46. 46.
    Rommelspacher H, Raeder C, Kaulen P, Bruning G. Adaptive changes of dopamine-D2 receptors in rat brain following ethanol withdrawal: a quantitative autoradiographic investigation. Alcohol. 1992;9(5):355–62.PubMedGoogle Scholar
  47. 47.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996;20(9):1594–8.PubMedGoogle Scholar
  48. 48.
    Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry. 2000;157(11):1789–98.PubMedGoogle Scholar
  49. 49.
    Beck A, Wustenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, Mann K, Heinz A. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry. 2012;69(8):842–52.PubMedGoogle Scholar
  50. 50.
    Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–33.PubMedGoogle Scholar
  51. 51.
    Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci. 2016;17(3):183–95.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Heinz A, Schlagenhauf F, Beck A, Wackerhagen C. Dimensional psychiatry: mental disorders as dysfunctions of basic learning mechanisms. J Neural Transm (Vienna). 2016;123(8):809–21.Google Scholar
  53. 53.
    Flagel SB, Akil H, Robinson TE. Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology. 2009;56(Suppl 1):139–48.PubMedGoogle Scholar
  54. 54.
    Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H. A selective role for dopamine in stimulus-reward learning. Nature. 2011;469(7328):53–7.PubMedGoogle Scholar
  55. 55.
    Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS. Human striatal response to salient nonrewarding stimuli. J Neurosci. 2003;23(22):8092–7.PubMedGoogle Scholar
  56. 56.
    Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, Steinacher B, Kathmann N, Geurts DE, Sommer C, Muller DK, Nebe S, Paul S, Wittchen HU, Zimmermann US, Walter H, Smolka MN, Sterzer P, Rapp MA, Huys QJ, Schlagenhauf F, Heinz A. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol. 2016;21(3):719–31.PubMedGoogle Scholar
  57. 57.
    Adams RA, Huys QJ, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2016;87(1):53–63.PubMedGoogle Scholar
  58. 58.
    Pfefferbaum A, Sullivan EV, Mathalon DH, Shear PK, Rosenbloom MJ, Lim KO. Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics. Alcohol Clin Exp Res. 1995;19(5):1177–91.PubMedGoogle Scholar
  59. 59.
    Stuke H, Gutwinski S, Wiers CE, Schmidt TT, Gropper S, Parnack J, Gawron C, Hindi Attar C, Spengler S, Walter H, Heinz A, Bermpohl F. To drink or not to drink: harmful drinking is associated with hyperactivation of reward areas rather than hypoactivation of control areas in men. J Psychiatry Neurosci. 2016;41(3):E24–36.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Park SQ, Kahnt T, Beck A, Cohen MX, Dolan RJ, Wrase J, Heinz A. Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci. 2010;30(22):7749–53.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci U S A. 2015;112(5):1595–600.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Schlagenhauf F, Rapp MA, Huys QJ, Beck A, Wustenberg T, Deserno L, Buchholz HG, Kalbitzer J, Buchert R, Bauer M, Kienast T, Cumming P, Plotkin M, Kumakura Y, Grace AA, Dolan RJ, Heinz A. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp. 2013;34(6):1490–9.PubMedGoogle Scholar
  63. 63.
    Lorenz RC, Kruger JK, Neumann B, Schott BH, Kaufmann C, Heinz A, Wustenberg T. Cue reactivity and its inhibition in pathological computer game players. Addict Biol. 2013;18(1):134–46.PubMedGoogle Scholar
  64. 64.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedGoogle Scholar
  65. 65.
    Adams KM, Gilman S, Koeppe RA, Kluin KJ, Brunberg JA, Dede D, Berent S, Kroll PD. Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol Clin Exp Res. 1993;17(2):205–10.PubMedGoogle Scholar
  66. 66.
    Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.PubMedGoogle Scholar
  67. 67.
    Volkow ND, Wang GJ, Shokri Kojori E, Fowler JS, Benveniste H, Tomasi D. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases. J Neurosci. 2015;35(7):3248–55.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry. 1987;44(3):211–8.PubMedGoogle Scholar
  69. 69.
    Baxter LR Jr, Schwartz JM, Bergman KS, Szuba MP, Guze BH, Mazziotta JC, Alazraki A, Selin CE, Ferng HK, Munford P, et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry. 1992;49(9):681–9.PubMedGoogle Scholar
  70. 70.
    Schwartz JM, Stoessel PW, Baxter LR Jr, Martin KM, Phelps ME. Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch Gen Psychiatry. 1996;53(2):109–13.PubMedGoogle Scholar
  71. 71.
    Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry. 2004;61(6):564–76.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kuhn S, Gallinat J. Common biology of craving across legal and illegal drugs – a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26.PubMedGoogle Scholar
  73. 73.
    Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12(11):652–69.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Huys QJM, Beck A, Dayan P, Heinz A. Neurobiology and computational structure of decision making in addiction. In: al. Me, editor. Phenomenological neuropsychiatry: bridging the clinic and clinical neuroscience. Posted at the Zurich Open Repository and Archive, University of Zurich. 2013.Google Scholar
  75. 75.
    Schoofs N, Heinz A. Pathological gambling. Impulse control disorder, addiction or compulsion? Nervenarzt. 2013;84(5):629–34.PubMedGoogle Scholar
  76. 76.
    Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci. 2011;12(7):400–13.PubMedGoogle Scholar
  77. 77.
    Heinz A. Der Begriff der psychischen Krankheit. Berlin: Suhrkamp; 2014.Google Scholar
  78. 78.
    Kant I. Anthropologie in pragmatischer Hinsicht. Stuttgart: Reclam; 1983.Google Scholar
  79. 79.
    van Os J. “Schizophrenia” does not exist. BMJ. 2016;352:i375.PubMedGoogle Scholar
  80. 80.
    Beard DJ, Findlay JA. Drapetomania—a disease called freedom. FL: Broward Public Library Foundation; 2000.Google Scholar
  81. 81.
    Naragon MD. Communities in motion: drapetomania, work and the development of African American slave cultures. Slavery Abolition. 1994;15(3):63–87.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyCharité—Universitätsmedizin BerlinBerlinGermany

Personalised recommendations