Skip to main content

Micro-mechanical Models for Polar Ice

  • Chapter
  • First Online:
Ice Mechanics for Geophysical and Civil Engineering Applications

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 512 Accesses

Abstract

This chapter is concerned with the behaviour of polar ice on geophysical time scales and its analysis by applying a micro-mechanical approach. Based on some assumptions regarding the anisotropic properties of an individual ice crystal and its microscopic deformation, frame-indifferent constitutive laws for creep response of the crystal are formulated. By applying homogenization methods, the microscopic laws are then used to derive the macroscopic constitutive relations for polycrystalline ice. These relations are employed to simulate the creep behaviour of ice in simple flow configurations in order to correlate parameters in the macroscopic flow laws with the observed anisotropic behaviour of polar ice. The chapter concludes with the analysis of the mechanism of dynamic (migration) recrystallization of polycrystalline ice. Three alternative dynamic recrystallization models are formulated, which are subsequently used in the simulations for simple flows to investigate the effect of the recrystallization process on the evolution of macroscopic viscosities of ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley RB (1992) Flow-law hypotheses for ice-sheet modelling. J Glaciol 38(129):245–256

    Article  Google Scholar 

  • Arminjon M (1991) Limit distributions of the states and homogenization in random media. Acta Mech 88:27–59

    Article  Google Scholar 

  • Azuma N (1994) A flow law for anisotropic ice and its application to ice sheets. Earth Planet Sci Lett 128(3–4):601–614

    Article  Google Scholar 

  • Azuma N (1995) A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation. Cold Reg Sci Technol 23:137–147

    Article  Google Scholar 

  • Bishop JFW, Hill R (1951) A theory of plastic distortion of a polycrystalline aggregate under combined stresses. Phil Mag (7th Ser) 42(327):414–427

    Google Scholar 

  • Boehler JP (1987) Representations for isotropic and anisotropic non-polynomial tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. Springer, Wien, pp 31–53

    Chapter  Google Scholar 

  • Budd WF, Jacka TH (1989) A review of ice rheology for ice sheet modelling. Cold Reg Sci Technol 16(2):107–144. https://doi.org/10.1016/0165-232X(89)90014-1

    Article  Google Scholar 

  • Castelnau O, Duval P, Lebensohn RA, Canova GR (1996) Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates. J Geophys Res 101(B6):13851–13868. https://doi.org/10.1029/96JB00412

    Article  Google Scholar 

  • Chadwick P (1999) Continuum mechanics: concise theory and problems, 2nd edn. Dover, Mineola, New York

    Google Scholar 

  • De La Chapelle S, Castelnau O, Lipenkov V, Duval P (1998) Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J Geophys Res 103(B3):5091–5105. https://doi.org/10.1029/97JB02621

    Article  Google Scholar 

  • Durand G, Svensson A, Persson A, Gagliardini O, Gillet-Chaulet F, Sjolte J, Montagnat M, Dahl-Jensen D (2009) Evolution of the texture along the EPICA Dome C ice core. In: Hondoh T (ed) Physics of ice core records II. Hokkaido University, Hokkaido, pp 91–105

    Google Scholar 

  • Duval P (1981) Creep and fabric of polycrystalline ice under shear and compression. J Glaciol 27(95):129–140

    Article  Google Scholar 

  • Duval P, Arnaud L, Brissaud O, Montagnat M, De La Chapelle S (2000) Deformation and recrystallization processes of ice from polar ice sheets. Ann Glaciol 30:83–87

    Article  Google Scholar 

  • Duval P, Castelnau O (1995) Dynamic recrystallization of ice in polar ice sheets. J Phys IV 5(C3):197–205

    Google Scholar 

  • Elvin AA (1996) Number of grains required to homogenize elastic properties of polycrystalline ice. Mech Mat 22(1):51–64

    Article  Google Scholar 

  • Faria SH (2006) Creep and recrystallization of large polycrystalline masses. III. Continuum theory of ice sheets. Proc R Soc Lond A 462(2073):2797–2816. https://doi.org/10.1098/rspa.2006.1698

    Article  Google Scholar 

  • Faria SH, Kremer GM, Hutter K (2003) On the inclusion of recrystallization processes in the modeling of induced anisotropy in ice sheeets: a thermodynamicist’s point of view. Ann Glaciol 37:29–34

    Article  Google Scholar 

  • Faria SH, Ktitarev D, Hutter K (2002) Modelling evolution of anisotropy in fabric and texture of polar ice. Ann Glaciol 35:545–551

    Article  Google Scholar 

  • Faria SH, Weikusat I, Azuma N (2014) The microstructure of polar ice. Part I: highlights from ice core research. J Struct Geol 61:2–20. https://doi.org/10.1016/j.jsg.2013.09.010

    Article  Google Scholar 

  • Gagliardini O, Arminjon M, Imbault D (2001) An inhomogeneous variational model applied to predict the behaviour of isotropic polycrystalline ice. Arch Mech 53(1):3–21

    Google Scholar 

  • Gagliardini O, Meyssonnier J (1999) Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. J Geophys Res 104(B8):17797–17809. https://doi.org/10.1029/1999JB900146

    Article  Google Scholar 

  • Gödert G, Hutter K (1998) Induced anisotropy in large ice shields: theory and its homogenization. Contin Mech Thermodyn 10(5):293–318

    Article  Google Scholar 

  • Gow AJ, Meese DA (2007) Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core. J Glaciol 53(183):573–584. https://doi.org/10.3189/002214307784409252

    Article  Google Scholar 

  • Gow AJ, Meese DA, Alley RB, Fitzpatrick JJ, Anandakrishnan S, Woods GA, Elder BC (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: a review. J Geophys Res 102(C12):26559–26575. https://doi.org/10.1029/97JC00165

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2):127–140

    Article  Google Scholar 

  • Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65(389):349–354

    Article  Google Scholar 

  • Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A 348(1652):101–127

    Article  Google Scholar 

  • Jacka TH, Maccagnan M (1984) Ice crystallographic and strain rate changes with strain in compression and extension. Cold Reg Sci Technol 8(3):269–286. https://doi.org/10.1016/0165-232X(84)90058-2

    Article  Google Scholar 

  • Jones SJ (1982) The confined compressive strength of polycrystalline ice. J Glaciol 28(98):171–177

    Article  Google Scholar 

  • Kamb WB (1961) The glide direction in ice. J Glaciol 3(30):1097–1106

    Article  Google Scholar 

  • Kennedy JH, Pettit EC, Di Prinzio CL (2013) The evolution of crystal fabric in ice sheets and its link to climate history. J Glaciol 59(214):357–373. https://doi.org/10.3189/2013JoG12J159

    Article  Google Scholar 

  • Ktitarev D, Gödert G, Hutter K (2002) Cellular automaton model for recrystallization, fabric, and texture development in polar ice. J Geophys Res 107(B8):2165. https://doi.org/10.1029/2001JB000621

    Article  Google Scholar 

  • Lile RC (1978) The effect of anisotropy on the creep of polycrystalline ice. J Glaciol 21(85):475–483

    Article  Google Scholar 

  • Liu IS (2002) Continuum mechanics. Springer, Berlin

    Book  Google Scholar 

  • Lliboutry L (1993) Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization. Int J Plast 9(5):619–632

    Article  Google Scholar 

  • Ma Y, Gagliardini O, Ritz C, Gillet-Chaulet F, Durand G, Montagnat M (2010) Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. J Glaciol 56(199):805–812

    Article  Google Scholar 

  • Mangeney A, Califano F, Castelnau O (1996) Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. J Geophys Res 101(B12):28189–28204

    Article  Google Scholar 

  • Mellor M, Cole DM (1982) Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg Sci Technol 5(3):201–219

    Article  Google Scholar 

  • Meyssonnier J, Philip A (1996) A model for tangent viscous behaviour of anisotropic polar ice. Ann Glaciol 23:253–261

    Article  Google Scholar 

  • Meyssonnier J, Philip A (1999) Remarks on self-consistent modelling of polycrystalline ice. In: Hutter K, Wang Y, Beer H (eds) Advances in cold-region thermal engineering and sciences. Springer, Berlin, pp 225–236

    Chapter  Google Scholar 

  • Molinari A, Canova GR, Ahzy S (1987) A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica 35(12):2983–2994

    Article  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5):571–574

    Article  Google Scholar 

  • Morland LW (2002) Influence of lattice distortion on fabric evolution in polar ice. Continuum Mech Thermodyn 14(1):9–24. https://doi.org/10.1007/s001610100068

    Article  Google Scholar 

  • Morland LW, Staroszczyk R (2009) Ice viscosity enhancement in simple shear and uni-axial compression due to crystal rotation. Int J Eng Sci 47(11–12):1297–1304. https://doi.org/10.1016/j.ijengsci.2008.09.011

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford

    Chapter  Google Scholar 

  • Pimienta P, Duval P, Lipenkov VY (1987) Mechanical behavior of anisotropic polar ice. In: International association of hydrological sciences publication, no 170, pp 57–66. (Symp. Physical Basis of Ice Sheet Modelling, Vancouver 1987)

    Google Scholar 

  • Placidi L, Greve R, Seddik H, Faria SH (2010) Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Continuum Mech Thermodyn 22(3):221–237. https://doi.org/10.1007/s00161-009-0126-0

    Article  Google Scholar 

  • Placidi L, Hutter K, Faria SH (2006) A critical review of the mechanics of polycrystalline polar ice. GAMM-Mitt 29(1):80–117

    Article  Google Scholar 

  • Rigsby GP (1958) Effect of hydrostatic pressure on velocity of shear deformation of single ice crystals. J Glaciol 3(24):273–278

    Article  Google Scholar 

  • Spencer AJM (1980) Continuum mechanics. Longman, Harlow

    Google Scholar 

  • Staroszczyk R (2001) A uniform stress, discrete-grain model for induced anisotropy of ice. In: Szmidt K (ed) Applications of mechanics in civil- and hydro-engineering. IBW PAN Publishing House, GdaƄsk, pp 295–314

    Google Scholar 

  • Staroszczyk R (2002) A uniform strain, discrete-grain model for evolving anisotropy of polycrystalline ice. Arch Mech 54(2):103–126

    Google Scholar 

  • Staroszczyk R (2004) Constitutive modelling of creep induced anisotropy of ice. IBW PAN Publishing House, GdaƄsk

    Google Scholar 

  • Staroszczyk R (2009) A multi-grain model for migration recrystallization in polar ice. Arch Mech 61(3–4):259–282

    Google Scholar 

  • Staroszczyk R (2011) A uniform stress, multi-grain model for migration recrystallization in polar ice. Acta Geophys 59(5):833–857. https://doi.org/10.2478/s11600-011-0026-0

    Article  Google Scholar 

  • Staroszczyk R, Morland LW (2000) Plane ice-sheet flow with evolving orthotropic fabric. Ann Glaciol 30:93–101

    Article  Google Scholar 

  • Staroszczyk R, Morland LW (2001) Strengthening and weakening of induced anisotropy in polar ice. Proc R Soc Lond A 457(2014):2419–2440. https://doi.org/10.1098/rspa.2001.0817

    Article  Google Scholar 

  • Svendsen B, Hutter K (1996) A continuum approach for modelling induced anisotropy in glaciers and ice sheets. Ann Glaciol 23:262–269

    Article  Google Scholar 

  • Thorsteinsson T (2002) Fabric development with nearest-neighbor interaction and dynamic recrystallization. J Geophys Res 107(B1). https://doi.org/10.1029/2001JB000244

    Article  Google Scholar 

  • Thorsteinsson T, Kipfstuhl J, Miller H (1997) Textures and fabrics in the GRIP ice core. J Geophys Res 102(C12):26583–26599. https://doi.org/10.1029/97JC00161

    Article  Google Scholar 

  • Thorsteinsson T, Waddington ED, Taylor KC, Alley RB, Blankenship DD (1999) Strain-rate enhancement at Dye 3, Greenland. J Glaciol 45(150):338–345

    Article  Google Scholar 

  • Treverrow A, Budd WF, Jacka TH, Warner RC (2012) The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain-rate enhancement. J Glaciol 58(208):301–314. https://doi.org/10.3189/2012JoG11J149

    Article  Google Scholar 

  • Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, Berlin

    Chapter  Google Scholar 

  • Van der Veen CJ, Whillans IM (1994) Development of fabric in ice. Cold Reg Sci Technol 22(2):171–195. https://doi.org/10.1016/0165-232X(94)90027-2

    Article  Google Scholar 

  • Wenk HR, Canova GR, Molinari A, Kocks UF (1989) Viscoplastic modelling of texture development in quartzite. J Geophys Res 94(B12):17895–17906

    Article  Google Scholar 

  • Zhang Y, Jenkins JT (1993) The evolution of the anisotropy of a polycrystalline aggregate. J Mech Phys Solids 41(7):1213–1243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Staroszczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staroszczyk, R. (2019). Micro-mechanical Models for Polar Ice. In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-03038-4_6

Download citation

Publish with us

Policies and ethics