Skip to main content

Sea Ice in Civil Engineering Applications

  • Chapter
  • First Online:
  • 509 Accesses

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

This chapter is devoted to the behaviour of sea ice on civil engineering length and time scales. Several problems of the interaction between a coherent sea ice cover and an engineering structure are analysed. First, the problem of elastic response of floating ice during its short-time interaction (measured in seconds) with a rigid vertical structure is analysed, with the aim to evaluate horizontal forces that are exerted by ice on the structure during an elastic buckling failure of a floating ice plate under compressive and bending loadings. Next, ice–structure interaction events lasting for hours and days are investigated, in which the deformations of ice are dominated by its creep. Thus, the mechanism of creep buckling of a floating ice plate is analysed, with the purpose to estimate the magnitudes of forces acting on the structure until the time at which the flexural failure of the ice cover occurs. This s followed by the analysis of a dynamic impact of floating ice on a rigid structure, during which the floating ice behaves in a typically brittle manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashby MF, Hallam SD (1986) The failure of brittle solids containing small cracks under compressive stress-states. Acta Metall 34(3):497–510

    Article  Google Scholar 

  • Chadwick P (1999) Continuum mechanics: concise theory and problems, 2nd edn. Dover, Mineola, New York

    Google Scholar 

  • Flato GM, Hibler WD (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22(6):626–651

    Article  Google Scholar 

  • Gray JMNT, Morland LW (1994) A two-dimensional model for the dynamics of sea ice. Philos Trans R Soc Lond A 347(1682):219–290. https://doi.org/10.1098/rsta.1994.0045

    Article  Google Scholar 

  • Hawkes I, Mellor M (1972) Deformation and fracture of ice under uniaxial stress. J Glaciol 11(61):103–131

    Article  Google Scholar 

  • Herman A (2016) Discrete-element bonded-particle Sea Ice model DESIgn, version 1.3a—model description and implementation. Geosci Model Dev 9(3):1219–1241. https://doi.org/10.5194/gmd-9-1219-2016

    Article  Google Scholar 

  • Herman A (2017) Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model. Cryosphere 11(6):2711–2725. https://doi.org/10.5194/tc-11-2711-2017

    Article  Google Scholar 

  • Hibler WD (1977) A viscous sea ice law as a stochastic average of plasticity. J Geophys Res 82(27):3932–3938

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846

    Article  Google Scholar 

  • Hibler WD (2001) Sea ice fracturing on the large scale. Eng Fract Mech 68(17–18):2013–2043. https://doi.org/10.1016/S0013-7944(01)00035-2

    Article  Google Scholar 

  • Hibler WD, Ip CF (1995) The effect of sea ice rheology on Arctic buoy drift. ASME AMD 207:255–263

    Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867

    Article  Google Scholar 

  • Hutter K (1983) Theoretical glaciology. Material science of ice and the mechanics of glaciers and ice sheets. Reidel, Dordrecht

    Google Scholar 

  • Iliescu D, Schulson EM (2002) Brittle compressive failure of ice: monotonic versus cyclic loading. Acta Mater 50(8):2163–2172

    Article  Google Scholar 

  • Ip CF, Hibler WD, Flato GM (1991) On the effect of rheology on seasonal sea-ice simulations. Ann Glaciol 15:17–25

    Article  Google Scholar 

  • Jordaan IJ (2001) Mechanics of ice–structure interaction. Eng Fract Mech 68(17–18):1923–1960

    Article  Google Scholar 

  • Kara AB, Wallcraft AJ, Metzger EJ, Hurlburt HE, Fairall CW (2007) Wind stress drag coefficient over the global ocean. J Clim 20(23):5856–5864. https://doi.org/10.1175/2007JCLI1825.1

    Article  Google Scholar 

  • Kerr AD (1978) On the determination of horizontal forces a floating ice plate exerts on a structure. J Glaciol 20(82):123–134

    Article  Google Scholar 

  • Kerr AD, Palmer WT (1972) The deformation and stresses in floating ice plates. Acta Mech 15(1–2):57–72. https://doi.org/10.1007/BF01177286

    Article  Google Scholar 

  • Lu P, Li Z, Cheng B, Leppäranta M (2011) A parameterization of the ice-ocean drag coefficient. J Geophys Res 116(C07):C07019. https://doi.org/10.1029/2010JC006878

    Article  Google Scholar 

  • Mellor M (1980) Mechanical properties of polycrystalline ice. In: Tryde P (ed) Proceedings of IUTAM symposium on physics and mechanics of ice, Copenhagen 1979. Springer, Berlin, pp 217–245

    Chapter  Google Scholar 

  • Morland LW (1993) The flow of ice sheets and ice shelves. In: Hutter K (ed) Continuum mechanics in environmental sciences and geophysics. Springer, Wien, pp 403–466

    Chapter  Google Scholar 

  • Morland LW (2001) Influence of bed topography on steady plane ice sheet flow. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 276–304

    Chapter  Google Scholar 

  • Morland LW, Staroszczyk R (1998) A material coordinate treatment of the sea-ice dynamics equations. Proc R Soc Lond A 454(1979):2819–2857. https://doi.org/10.1098/rspa.1998.0283

    Article  Google Scholar 

  • Nevel DE (1980) Bending and buckling of a wedge on an elastic foundation. In: Tryde P (ed) Proceedings of IUTAM symposium on physics and mechanics of ice, Copenhagen 1979. Springer, Berlin, pp 278–288

    Chapter  Google Scholar 

  • Nixon WA (1996) Wing crack models of the brittle compressive failure of ice. Cold Reg Sci Technol 24(1):41–55

    Article  Google Scholar 

  • Overland JE, Pease CH (1988) Modeling ice dynamics of coastal seas. J Geophys Res 93(C12):15 619–15 637. https://doi.org/10.1029/JC093iC12p15619

    Article  Google Scholar 

  • Palmer AC, Sanderson TJO (1991) Fractal crushing of ice and brittle solids. Proc R Soc Lond A 433:469–477

    Article  Google Scholar 

  • Polojärvi A, Tuhkuri J (2009) 3D discrete numerical modelling of ridge keel punch through tests. Cold Reg Sci Technol 56(1):18–29. https://doi.org/10.1016/j.coldregions.2008.09.008

    Article  Google Scholar 

  • Polojärvi A, Tuhkuri J, Pustogvar A (2015) DEM simulations of direct shear box experiments of ice rubble: force chains and peak loads. Cold Reg. Sci. Technol. 116:12–23. https://doi.org/10.1016/j.coldregions.2015.03.011

    Article  Google Scholar 

  • Pralong A, Hutter K, Funk M (2006) Anisotropic damage mechanics for viscoelastic ice. Continuum Mech Thermodyn 17(5):387–408

    Article  Google Scholar 

  • Rothrock DA (1975) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res 80(33):4514–4519. https://doi.org/10.1029/JC080i033p04514

    Article  Google Scholar 

  • Sanderson TJO (1988) Ice mechanics. Risks to offshore structures. Graham and Trotman, London

    Google Scholar 

  • Schulkes RMSM, Morland LW, Staroszczyk R (1998) A finite-element treatment of sea ice dynamics for different ice rheologies. Int J Numer Anal Methods Geomech 22(3):153–174

    Article  Google Scholar 

  • Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schulson EM, Gratz ET (1999) The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater 47(3):745–755

    Article  Google Scholar 

  • Sjölind SG (1985) Viscoelastic buckling analysis of floating ice sheets. Cold Reg Sci Technol 11(3):241–246

    Article  Google Scholar 

  • Sjölind SG (1987) A constitutive model for ice as a damaging visco-elastic material. Cold Reg Sci Technol 14(3):247–262

    Article  Google Scholar 

  • Smith GD, Morland LW (1981) Viscous relations for the steady creep of polycrystalline ice. Cold Reg Sci Technol 5(2):141–150

    Article  Google Scholar 

  • Smith RB (1983) A note on the constitutive law for sea ice. J Glaciol 29(101):191–195

    Article  Google Scholar 

  • Sodhi DS, Haynes FD, Kato K, Hirayama K (1983) Experimental determination of the buckling loads of floating ice sheets. Ann Glaciol 4:260–265

    Article  Google Scholar 

  • Specht B (1988) Modified shape functions for the three-node plate bending element passing the patch test. Int J Numer Methods Eng 26(3):705–715. https://doi.org/10.1002/nme.1620260313

    Article  Google Scholar 

  • Staroszczyk R (2002) On the maximum horizontal forces exerted by floating ice on engineering structures. Arch Hydro-Eng Environ Mech 49(4):17–35

    Google Scholar 

  • Staroszczyk R (2003) Finite element simulations of floating ice–engineering structure interactions. Arch Hydro-Eng Environ Mech 50(3):251–268

    Google Scholar 

  • Staroszczyk R (2005) Loads exerted by floating ice on a cylindrical structure. Arch Hydro-Eng Environ Mech 52(1):39–58

    Google Scholar 

  • Staroszczyk R (2006) Loads exerted on a cylindrical structure by floating ice modelled as a viscous-plastic material. Arch Hydro-Eng Environ Mech 53(2):105–126

    Google Scholar 

  • Staroszczyk R (2007) Loads on an off-shore structure due to an ice floe impact. Arch Hydro-Eng Environ Mech 54(2):77–94

    Google Scholar 

  • Staroszczyk R (2018) Floating ice plate failure due to its thermal expansion at the surface. Ocean Eng 158:331–337. https://doi.org/10.1016/j.oceaneng.2018.03.072

    Article  Google Scholar 

  • Staroszczyk R, Hedzielski B (2004) Creep buckling of a wedge-shaped floating ice plate. Eng Trans 52(1–2):111–130

    Google Scholar 

  • Timco GW, O’Brien S (1994) Flexural strength equation for sea ice. Cold Reg Sci Technol 22(3):285–298. https://doi.org/10.1016/0165-232X(94)90006-X

    Article  Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tremblay LB, Mysak LA (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27(11):2342–2360

    Article  Google Scholar 

  • Wang YS, Ralston TD (1983) Elastic-plastic stress and strain distributions in an ice sheet moving against a circular structure. In: Proceedings of seventh international conference on port and ocean engineering under arctic conditions, Helsinki 1983, pp 940–951

    Google Scholar 

  • Xu Y, Xu J, Wang J (2004) Fractal model for size effect on ice failure strength. Cold Reg Sci Technol 40(1–2):135–144

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2005a) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005b) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Amsterdam

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Staroszczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staroszczyk, R. (2019). Sea Ice in Civil Engineering Applications. In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-03038-4_4

Download citation

Publish with us

Policies and ethics