Skip to main content

The BaConLaws Model for Bat–Ball Collisions

  • Chapter
  • First Online:

Abstract

This chapter is the workhorse of this book. It contains our most comprehensive model. It models a collision at the sweet spot of the bat with spin on the pitch. It has five equations and five unknowns. It uses the conservation laws of physics. This chapter contains a sensitivity analysis of the model that shows the most important variables and parameters of the model. It also has advice to help each person select or create an optimal bat. It derives equations for the speed and spin of the bat and ball after the collision in terms of these same variables before the collision. The derivations are given in great detail. It is unique in the science of baseball literature. This chapter is independent of other chapters. You need not read previous chapters in order to understand it. In other words, a teacher could use this chapter in a physics or engineering course and the students would only have to buy this one chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.

References

  • Bahill, A. T. (2004). The ideal moment of inertia for a baseball or softball bat. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 34(2), 197–204.

    Article  Google Scholar 

  • Bahill, A. T., Baldwin, D. G., & Ramberg, J. S. (2009). Effects of altitude and atmospheric conditions on the flight of a baseball. International Journal of Sports Science and Engineering, 3(2), 109–128. http://www.worldacademicunion.com/journal/SSCI/sscivol03no02paper07.pdf. ISSN 1750-9823 (print).

  • Bahill, A. T., & Karnavas, W. J. (1989). Determining ideal baseball bat weights using muscle force-velocity relationships. Biological Cybernetics, 62, 89–97.

    Article  Google Scholar 

  • Bahill, A. T., & Karnavas, W. J. (1991, April 6). The ideal baseball bat. New Scientist, 130(1763), 26–31.

    Google Scholar 

  • Bahill, A. T., & Madni, A. M. (2017). Tradeoff decisions in system design. Springer Publishing Company, New York. ISBN 978-3-319-43710-1.

    Google Scholar 

  • Bahill, A. T., & Morna Freitas, M. (1995). Two methods for recommending bat weights. Annals of Biomedical Engineering, 23/4, 436–444.

    Google Scholar 

  • Baldwin, D. (2007). Snake Jazz. Xlibris Corporation. http://www.xlibris.com/Bookstore/BookSearchResults.aspx?Title=Snake+Jazz&Author=Baldwin&.

  • Baldwin, D. G., & Bahill, A. T. (2004). A model of the bat’s vertical sweetness gradient. The Engineering of Sport, 5(2). In M. Hubbard, R. D. Mehta, & J. M. Pallis (Eds.), Proceedings of the 5th International Engineering of Sport Conference, September 13–16, 2004. Davis, C. A. (2004). International Sports Engineering Association (ISEA), Sheffield, England (pp. 305–311).

    Google Scholar 

  • Brancazio, P. (1984). Sport science: Physical laws and optimum performance. New York: Simon and Schuster.

    Google Scholar 

  • Choi, K. K., & Kim, M. H. (2005). Structural sensitivity analysis and optimization 1: Linear systems. New York, NY: Springer Science+Bussiness Media Inc.

    Google Scholar 

  • Crisco, J. J., Rainbow, M. J., Schwartz, J. B., & Wilcox, B. J. (2014). Batting cage performance of wood and nonwood youth baseball bats. Journal of Applied Biomechanics, 30, 237–243. https://doi.org/10.1123/jab.2012-0178.

    Article  Google Scholar 

  • Cross, R. (2011). Physics of baseball and softball. New York: Springer.

    Book  Google Scholar 

  • Hill, A. V. (1938). The heat of shortening and dynamic constraints of muscle. Proceedings of the Royal Society of London, 126B, 136–195.

    Article  Google Scholar 

  • Kensrud, J. R., Nathan, A. M., & Smith, L. V. (2016, October). Oblique collisions of baseballs and softballs with a bat, American Journal of Physics.

    Google Scholar 

  • Kirkpatrick, P. (1963). Batting the ball. American Journal of Physics, 31(8), 606–613. https://doi.org/10.1119/1.1969691.

    Article  Google Scholar 

  • Nathan, A. M. (2003). Characterizing the performance of baseball bats. American Journal of Physics, 71, 134–143.

    Article  Google Scholar 

  • Nathan, A. M., Smith, L. V., Faber, W. L., & Russell, D. A. (2011). Corked bats, juiced balls, and humidors: The physics of cheating in baseball. American Journal of Physics, 79(6), 575–580.

    Article  Google Scholar 

  • Nathan, A. M., Cantakos, J., Kesman, R., Mathew, B., & Lukash, W. (2012). Spin of a batted baseball. Procedia Engineering, 34, 182–187. In 9th Conference of the International Sports Engineering Association (ISEA). https://doi.org/10.1016/j.proeng.2012.04.032.

  • Smith, E. D., Szidarovszky, F., Karnavas, W. J., & Bahill, A. T. (2008). Sensitivity analysis, a powerful system validation technique. The Open Cybernetics and Systemics Journal, 2, 39–56. https://doi.org/10.2174/1874110X00802010039.

  • Smith, L., & Kensrud, J. (2014). Field and laboratory measurements of softball player swing speed and bat performance. Sports Engineering, 17, 75–82. https://doi.org/10.1007/s12283-013-0126-y.

    Article  Google Scholar 

  • Vedula, G., & Sherwood, J. A. (2004). An experimental and finite element study of the relationship amongst the sweet spot, COP and vibration nodes in baseball bats. In M. Hubbard, R. D. Mehta, & J. M. Pallis (Eds.), Proceedings of the 5th Conference of Engineering of Sport (vol. 2, pp. 626–632). International Sports Engineering Association (ISEA). ISBN 0-9547861-1-4.

    Google Scholar 

  • Watts, R. G., & Bahill, A. T. Keep your eye on the ball: Curveballs, knuckleballs, and fallacies of baseball. New York: W. H. Freeman and Co., first edition, 1990, second edition 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Terry Bahill .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahill, A.T. (2019). The BaConLaws Model for Bat–Ball Collisions. In: The Science of Baseball. Springer, Cham. https://doi.org/10.1007/978-3-030-03032-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03032-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03031-5

  • Online ISBN: 978-3-030-03032-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics