Skip to main content

Mineral Geothermobarometry

  • Chapter
  • First Online:
The Nature and Models of Metamorphism

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

This chapter presents the most recent and comprehensive overview of a wide range of basic geothermobarometric techniques used in metamorphic petrology. This chapter provides specific mineralogical calibrations based on exchange equilibria involving the major or trace elements and net-transfer reactions, as well as geothermobarometry using multi-mineral equilibria based on internally consistent thermodynamic datasets, analysis of mineral zoning and P-T phase diagrams (petrogenetic grids and pseudosections). This chapter takes a look at the current possibilities and limitations, including the fields of application, errors associated with each method and presents a comparative analysis of different approaches using geothermobarometry and comparison of the results with natural observations. Methodologically, this chapter presents a comprehensive analysis of the most interesting and important methods and problems of geothermobarometry with recommendations for the use of certain petrological tools in reconstructing the P-T conditions of the formation and evolution of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrov IA (2010) Metamorficheskiye porody amfibolitovoy fatsii Dzhugdzhuro-Stanovoy skladchatoy oblasti: usloviya obrazovaniya i sostav protolitov (Metamorphic rocks of amphibolite facies of the Dzhugdzhuro-Stanovoy folded region: conditions of formation and composition of protolith). Dalnauka, Vladivostok

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559

    Article  Google Scholar 

  • Anovitz LM (1991) Al zoning in pyroxene and plagioclase: window on the late prograde to early retrograde P-T paths in granulite terrains. Am Mineral 76:1328–1343

    Google Scholar 

  • Anovitz LM, Essene EJ (1987a) Phase equilibria in the system CaCO3–MgCO3–FeCO3. J Petrol 28:389–414

    Article  Google Scholar 

  • Anovitz LM, Essene EJ (1987b) Compatibility of geobarometers in the system CaO–FeO–Al2O3–SiO2–TiO2 (CFAST): implications for garnet mixing models. J Geol 95:633–645

    Article  Google Scholar 

  • Aranovich LY (1991) Mineral’nyye ravnovesiya mnogokomponentnykh tverdykh rastvo-rov (Mineral equilibria of multicomponent solid solutions). Nauka, Moscow

    Google Scholar 

  • Aranovich LY, Podlesskii KK (1989) Geothermobarometry of high-grade metapelites: simultaneously operating reactions. In: Yardley BWD, Daly JS, Cliff RA (eds) Evolution of metamorphic belts, vol 43. Geological Society Special Publications, Blackwell, London, pp 45–61

    Article  Google Scholar 

  • Aranovich LY, Berman RG (1997) A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. Am Mineral 82:345–353

    Article  Google Scholar 

  • Avchenko OV (1990) Mineral’nyye ravnovesiya v metamorficheskikh porodakh i problemy geobarotermometrii (Mineral equilibria in metamorphic rocks and the problems of geobarothermometry). Nauka, Moscow

    Google Scholar 

  • Avchenko OV, Chudnenko KV, Aleksandrov IA (2009) Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh sistem (The principles of physicochemical modeling of mineral systems). Nauka, Moscow

    Google Scholar 

  • Bea F, Montero P, Garuti G et al (1997) Pressure-dependence of rare earth element distribution in apphibolite- and granulite-grade garnets. A LA-ICP-MS study. Geost Newslett 21:253–270

    Article  Google Scholar 

  • Benisek A, Kroll H, Cemic L (2004) New developments in two-feldspar thermometry. Am Mineral 89:1496–1504

    Article  Google Scholar 

  • Benisek A, Dachs E, Kroll H (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contrib Mineral Petrol 160:327–337

    Article  Google Scholar 

  • Berman RG (1991) Thermobarometry using multi-equilibribrium calculations: a new technique, with petrological applications. Can Mineral 29:833–856

    Google Scholar 

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals. Contrib Mineral Petrol 126:1–24

    Article  Google Scholar 

  • Bhadra S, Bhattacharya A (2007) The barometer tremolite + tschermakite + 2 albite + 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. Am Mineral 92:491–502

    Article  Google Scholar 

  • Bhattacharya A, Krishnakumar KR, Raith M et al (1991) An improved set of a—X parameters for Fe–Mg–Ca garnets and refinements of the orthopyroxene–garnet thermometer and the orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol 32:629–656

    Article  Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL (1981) Experimental investigations and geological applications of orthopyroxene geobarometry. Am Mineral 66:951–964

    Google Scholar 

  • Bohlen SR, Liotta JJ (1986) A barometer for garnet amphibolites and garnet granulites. J Petrol 27:1025–1056

    Article  Google Scholar 

  • Bohlen SR, Wall VJ, Boettcher AL (1983a) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61

    Article  Google Scholar 

  • Bohlen SR, Wall VJ, Boettcher AL (1983b) Experimental investigations and geologic applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O. Am Mineral 68:1049–1058

    Google Scholar 

  • Bowen NL (1940) Progressive metamorphism of siliceous limestone and dolomites. J Geol 48:225–274

    Article  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV et al (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821

    Article  Google Scholar 

  • Brown EH (1977) The crossite content of Ca-amphibole as a guide to pressure of metamorphism. J Petrol 18:53–72

    Article  Google Scholar 

  • Bryndzia LT, Scott SD, Spry PG (1990) Sphalerite and hexagonal pyrrhotite geobarometer: correction in calibration and application. Econ Geol 85:408–411

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Bucher-Nurminen KA (1987) A recalibration of the chlorite-biotite-muscovite geobarometer. Contrib Mineral Petrol 96:519–522

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and their synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Canil D (1999) The Ni-in-garnet geothermometer: calibration at natural abundances. Contrib Mineral Petrol 136:240–246

    Article  Google Scholar 

  • Carmichael DM (1991) Univariant mixed-volatile reactions: pressure-temperature phase diagrams and reaction isograds. Can Mineral 29:741–754

    Google Scholar 

  • Carrington DP, Harley SL (1995) Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contrib Mineral Petrol 120:270–291

    Article  Google Scholar 

  • Carswell DA, Harley SL (1989) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogites and related rocks. Blackie, Glasgow, pp 83–110

    Google Scholar 

  • Chatterjee ND, Flux S (1986) Thermodynamic mixing properties of muscovite-paragonite crystalline solutions at high temperatures and pressures, and their geological applications. J Petrol 27:677–693

    Article  Google Scholar 

  • Chatterjee ND, Johannes WS (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2Al3Si3O10(OH)2. Contrib Mineral Petrol 48:89–114

    Google Scholar 

  • Cherniak DJ, Manchester J, Watson EB (2007) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261:267–279

    Article  Google Scholar 

  • Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Dachs E (1998) PET: petrological elementary tools for mathematics. Comput Geosci 24:219–235

    Article  Google Scholar 

  • Dahl PS (1980) The thermal-compositional dependence of Fe2+–Mg distributions between coexisting garnet and pyroxene: applications to geothermometry. Am Mineral 65:852–866

    Google Scholar 

  • Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140:353–362

    Article  Google Scholar 

  • David BTC, Boyd FR (1966) The join Mg2Si2O6–CaMgSi2O6 at 30 kbar and its application to pyroxene from kimberlites. J Geophys Res 71:3567–3576

    Article  Google Scholar 

  • Davidson PM, Lindsley DH (1985) Thermodynamic analysis of quadrilateral pyroxenes. Part II: model calibration from experiments and application to geothermometry. Contrib Mineral Petrol 91:390–404

    Article  Google Scholar 

  • De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • Dickenson MP, Hewitt D (1986) A garnet-chlotite geothermometer. Geol Soc Am Abstr 18:584

    Google Scholar 

  • Docka JA, Berg JH, Klewin K (1986) Geothermometry in the Kiglapait aureole. II. Evaluation of exchange thermometry in a well-constrained settings. J Petrol 27:605–626

    Article  Google Scholar 

  • Eckert JO, Newton RC, Kleppa OJ (1991) The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. Am Mineral 76:148–160

    Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Engi M (1983) Equilibria involving Al–Cr spinel: Mg–Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry. Am J Sci 283A:29–71

    Google Scholar 

  • Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society Special Publication, Blackwell, Oxford, pp 1–44

    Google Scholar 

  • Essene EJ, Bohlen SR (1985) New garnet barometersin the system CaO–FeO–Al2O3–SiO2–TiO2 (CFAST). EOS Trans Am Geophys Union 66:386

    Google Scholar 

  • Eugster HP, Albee AL, Bence AE et al (1972) The two-phase region and excess mixing properties of paragonite-muscovite crystalline solutions. J Petrol 13:147–179

    Article  Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318

    Article  Google Scholar 

  • Faulhaber S, Raith M (1991) Geothermometry and geobarometry of high-grade rocks: a case study on garnet-pyroxene granulites in southern Sri Lanka. Mineral Mag 55:33–56

    Article  Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Fonarev VI, Konilov AN (1986) Experimental study of Fe–Mg distribution between biotite and orthopyroxene at P = 490. Contrib Mineral Petrol 93:227–235

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Ganguly J (1979) Garnet and clinopyroxene solid solutions and geothermometry based on Fe-Mg distribution coefficient. Geochim Cosmochim Acta 43:1021–1029

    Article  Google Scholar 

  • Gasparik T (1984) Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO–Al2O3–SiO2. Geochim Cosmochim Acta 48:2537–2546

    Article  Google Scholar 

  • Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of science dissertation, Moscow State University, Moscow

    Google Scholar 

  • Gerya TV, Perchuk LL (1990) GEOPATH: a new computer program for geothermobarometry and related calculations with the IBM PC computer. In: Abstracts of the 15th general meeting of IMA, Beijing, 28 June–3 July 1990

    Google Scholar 

  • Ghent ED (1976) Plagioclase-garnet-Al2SiO5-quartz: a potential geobarometer-geothrmometer. Am Mineral 61:710–714

    Google Scholar 

  • Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite- garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1991) Thermochemistry of the oxide minerals. Rev Mineral 25:265–302

    Google Scholar 

  • Goldsmith JR, Heard HC (1961) Sub-solidus phase relations in the system CaCO3–MgCO3. J Geol 69:45–74

    Article  Google Scholar 

  • Graham CM, Powell R (1984) A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schists, Southern California. J Metamorph Geol 2:13–21

    Article  Google Scholar 

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the system CePO4–YPO4. Am Mineral 82:772–780

    Article  Google Scholar 

  • Green NL, Usdansky SI (1986) Toward a practical plagioclase-muscovite thermometer. Am Mineral 71:1109–1117

    Google Scholar 

  • Griffin WL, Cousens DR, Ryan CD et al (1989) Ni in chrome pyrope garnets: a new geothermometer. Contrib Mineral Petrol 103:199–202

    Article  Google Scholar 

  • Haas H, Holdaway MJ (1973) Equilibria in the system Al2O3–SiO2–H2O involving the stability limits of pyrophyllite, and thermodynamic data of pyrophyllite. Am J Sci 273:348–357

    Article  Google Scholar 

  • Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154

    Article  Google Scholar 

  • Harley SL, Motoyoshi Y (2000) Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120 °C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contrib Mineral Petrol 138:293–307

    Article  Google Scholar 

  • Harte B, Hudson NFC (1979) Pelite facies series and the temperatures and pressures of Dalradian metamorphism in eastern Scotland. In: Harris AL, Holland CH, Leake BE (eds) The caledonides of the British Isles, vol 8. Geologocal Society Special Publication, Blackwell, Oxford, pp 323–337

    Google Scholar 

  • Heinrich W, Rehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    Article  Google Scholar 

  • Hemingway BS, Krupka KM, Robie RA (1981) Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite. Am Mineral 66:1202–1215

    Google Scholar 

  • Hensen BJ, Green DH (1973) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III Synthesis of experimental data and geological application. Contib Mineral Petrol 38:151–166

    Article  Google Scholar 

  • Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67:1118–1134

    Google Scholar 

  • Hodges KV, Crowley PD (1985) Error estimation and empirical geothermobarometry for pelitic system. Am Mineral 70:702–709

    Google Scholar 

  • Hodges KV, McKenna LW (1987) Realistic propagation of uncertainties in geologic thermobarometry. Am Mineral 72:671–680

    Google Scholar 

  • Hofmann AE, Baker MB, Eiler JM (2013) An experimental study of Ti and Zr partitioning among zircon, rutile, and granitic melt. Contrib Mineral Petrol 166:235–253

    Article  Google Scholar 

  • Hoisch TD (1989) A muscovite-biotite geothermometer. Am Mineral 74:565–572

    Google Scholar 

  • Hoisch TD (1990) Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104:225–234

    Article  Google Scholar 

  • Hoisch TD (1991) Equilibria within the mineral assemblage quartz + muscovite + biotite + garnet + plagioclase and implications for the mixing properties of octahedrally coordinated cations in muscovite and biotite. Contrib Mineral Petrol 108:43–54

    Article  Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    Article  Google Scholar 

  • Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892

    Article  Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe–Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198

    Article  Google Scholar 

  • Holdaway MJ, Dutrow BL, Hinton RW (1988) Devonian and Carboniferous metamorphism in West-Central Maine: the muscovite-almandine geobarometer and the staurolite problem revisited. Am Mineral 73:20–47

    Google Scholar 

  • Holdaway MJ, Mukhopadhyay B, Dyar MD et al (1997) Garnet-biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82:582–595

    Article  Google Scholar 

  • Holland TJB (1979) Experimental determination of the reaction Paragonite = Jadeite + Kyanite + H2O, and internally consistent thermodynamic data for part of the system Na2O–Al2O3–SiO2–H2O, with application to eclogites and blueschists. Contib Mineral Petrol 68:292–301

    Article  Google Scholar 

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hollister LS, Grissom GC, Peters EK et al (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89

    Article  Google Scholar 

  • Huckenholz HG, Lindhuber W, Fehr KT (1981) Stability of grossular + quartz + wollastonite + anorthite: the effect of andradite and albite. N Jahrb Mineral Abh 142:223–247

    Google Scholar 

  • Hynes A, Forest RC (1988) Empirical garnet-muscovite geothermometry in low-grade metapelites, Selwyn Range (Canadian Rockies). J Metamorph Geol 6:297–309

    Article  Google Scholar 

  • Jamieson RA, Crow D (1987) Sphalerite geobarometry in metamorphic terranes: an appraisal with implications for metamorphic pressure in the Otago Schist. J Metamorh Geol 5:87–99

    Article  Google Scholar 

  • Johnson CA, Essene EJ (1982) The formation of garnet in olivine-bearing metagabbros from the Adirondacks. Contrib Mineral Petrol 81:240–251

    Article  Google Scholar 

  • Kaneko Y, Miyano T (2004) Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73:255–269

    Article  Google Scholar 

  • Karpov IK (1981) Fiziko-khimicheskoye modelirovaniye v geokhimii (Physico-chemical modeling in geochemistry). Nauka, Novosibirsk

    Google Scholar 

  • Karpov IK, Chudnenko KV, Kulik DA et al (2001) Minimizatsiya energii Gibbsa v geokhimicheskikh sistemakh metodom vypuklogo programmirovaniya (Minimization of Gibbs energy in geochemical systems by the method of convex programming). Geochemistry 39(11):1207–1219

    Google Scholar 

  • Kawasaki T, Matsui Y (1977) Partitioning of Fe2+ and Mg2+ between olivine and garnet. Earth Planet Sci Lett 37:159–166

    Article  Google Scholar 

  • Kawasaki T, Motoyoshi Y (2007) Solubility of TiO2 in garnet and orthopyroxene: Ti thermometer for ultrahigh-temperature granulites. Short research paper 038, US Geological Survey and National Academy and Sciences, USGS OF-2007-1047. http://dx.doi.org/10.3133/of2007-1047.srp038

  • Kawasaki T, Osanai Y (2008) Empirical thermometer of TiO2 in quartz for ultrahigh-temperature granulites of East Antarctica. In: Satish-Kumar M, Motoyoshi Y, Osanai Y (eds) Geodynamic evolution of east Antarctica: a key to the east-west Gondwana connection, vol 308. Geologocal Society Special Publication, Blackwell, London, pp 419–430

    Article  Google Scholar 

  • Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13:1–29

    Article  Google Scholar 

  • Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: The effect of AlVI and Ti in biotite. Eur J Mineral 6:925–941

    Article  Google Scholar 

  • Kohler T, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1989) Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. Am Mineral 74:77–84

    Google Scholar 

  • Kohn MJ, Spear FS (1991) Error propagation for barometers. Am Mineral 76:138–147

    Google Scholar 

  • Kotov NV (1986) Termodinamicheskiye usloviya pozdnego diageneza i nachal’nogo metamorfizma (Thermodynamic conditions of late diagenesis and initial metamorphism). Nauka, Moscow, pp 90–103

    Google Scholar 

  • Koziol AM (1989) Recalibration of the garnet-plagioclase-Al2SiO5-quartz (GASP) geobarometer and application to natural parageneses. EOS Trans Am Geophys Union 70:493

    Google Scholar 

  • Koziol AM, Newton RC (1988) Redetermination of the garnet breakdown reaction and improvement of the plagiclase-garnet-Al2SiO5-quartz geobarometer. Am Mineral 73:216–223

    Google Scholar 

  • Koziol AM, Bohlen SR (1992) Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments. Am Mineral 77:765–773

    Google Scholar 

  • Kroll H, Evangelakakis C, Voll C (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. Contrib Mineral Petrol 114:510–518

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Likhanov II (1988a) Chloritoid, staurolite and gedrite of the high-a lumina hornfelses of the Karatash pluton. Int Geol Rev 30(8):868–877

    Article  Google Scholar 

  • Likhanov II (1988b) Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton. Int Geol Rev 30(8):878–887

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2013) Mineral assemblages of the Al2SiO5 “triple point” in metapelites. Dokl Earth Sci 448(1):74–77

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2014) P-T-t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications. Russ Geol Geophys 55(3):299–322

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Sheplev VS et al (2001) Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisei Ridge, eastern Siberia, Russia. Lithos 58:55–80

    Article  Google Scholar 

  • Likhanov II, Polyansky OP, Reverdatto VV et al (2004a) Evidence from Fe- and Al- rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Selyatizky AY (2004b) Petrogenetic grid for ferruginous-aluminous metapelites in the K2O–FeO–MgO–Al2O3–SiO2–H2O system. Dokl Earth Sci 394(1):46–49

    Google Scholar 

  • Likhanov II, Reverdatto VV, Selyatizkii AY (2005) Mineral equilibria and P-T diagram for Fe- and Al-rich metapelites in the KFMASH system (K2O–FeO–MgO–Al2O3–SiO2–H2O). Petrology 13(1):73–83

    Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2015) P-T-t constraints on polymetamorphic complexes in the Yenisei Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions. J Asian Earth Sci 113:391–410

    Article  Google Scholar 

  • Liou JG, Maruyama S, Cho M (1987) Very low-grade metamorphism of volcanic and volcaniclastic rocks—mineral assemblages and mineral facies. In: Frey M (ed) Low temperature metamorphism. Blackie, Glasgow, pp 59–114

    Google Scholar 

  • Lusk J, Ford CE (1978) Experimental extension of the sphalerite geobarometer at 10 kbar. Am Mineral 63:516–519

    Google Scholar 

  • Mahar EM, Baker JM, Powell R et al (1997) The effect of Mn on mineral stability in metapelites. J Metamorphic Geol 15:223–238

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224

    Article  Google Scholar 

  • McCartey TC, Patino Douce AE (1998) Empirical calibration of the silica-tschermak’s-anorthite (SCAn) geobarometer. J Metamorph Geol 16:675–686

    Article  Google Scholar 

  • Mirwald PW, Scola M, Tropper P (2008) Experimental study on the incorporation of Na in Mg-cordierite in the presence of different fluids (Na(OH), NaCl–H2O, albite-H2O). Geophys Res Abstr 10:EGU2008-A-04149

    Google Scholar 

  • Moecher DP, Essene EJ, Anovitz LM (1988) Calculation of clinopyroxene-garnet-plagioclasequartz geobarometers and application to high grade metamorphic rocks. Contrib Mineral Petrol 100:92–106

    Article  Google Scholar 

  • Newton RC (1983) Geobarometry of high-grade metamorphic rocks. Am J Sci 283A:1–28

    Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • O’Neill HSC, Wood BJ (1979) An experimental study of Fe–Mg-partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70

    Article  Google Scholar 

  • Pactunc AD (1998) MODAN: an interactive computer program for estimating mineral quantities based on bulk composition. Comput Geosci 24:425–431

    Article  Google Scholar 

  • Paria P, Bhattacharya A, Sen A (1988) The reaction garnet + clinopyroxene + quartz = 2 orthopyroxene + anorthite: a potential geobarometer for granulites. Contrib Mineral Petrol l99:126–133

    Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446

    Article  Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 «triple point» assemblages in muscovite + biotite + quartz—bearing metapelites, with implications. Am Mineral 86:1414–1422

    Article  Google Scholar 

  • Pattison DRM, Newton RC (1989) Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib Mineral Petrol 101:87–103

    Article  Google Scholar 

  • Pattison DRM, Chako T, Farquhar J et al (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermo-barometry corrected from retrograde exchange. J Petrol 44:867–900

    Article  Google Scholar 

  • Perchuk LL (1970) Ravnovesiya porodoobrazuyushih mineralov (Equilibria of rock-forming minerals). Nauka, Moscow

    Google Scholar 

  • Perchuk LL (1989) Vzaimosoglasovanie nekotorykh Fe–Mg geotermomotrov na osnove zakona | Nernsta: revisiya (Mutual consistence between some Fe–Mg-geothermometers based on the Nernst law: revision). Geokhimiya 27(5):611–622

    Google Scholar 

  • Perchuk LL (1991) Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks. In: Perchuk LL (ed) Progress in metamorphic and magmatic petrology. Cambridge University Press, Cambridge, pp 93–112

    Chapter  Google Scholar 

  • Perchuk LL, Gerya TV (1989) A set of internally consistent spinel-bearing geothermometers and geobarometers. In: Abstracts of the international symposium “Granulite metamorphism”, University of New South Wales, Sydney

    Google Scholar 

  • Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Heidelberg, pp 199–239

    Chapter  Google Scholar 

  • Perchuk LL, Ryabchikov ID (1976) Phasovye sootvetstviya v mineralnyh systemakh (Phase correspondences in mineral systems). Nedra, Moscow

    Google Scholar 

  • Perchuk LL, Gerya TV, van Reenen TV et al (2000) Comparable petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high-grade terrains. Mineral Petrol 69:69–107

    Article  Google Scholar 

  • Perkins D, Chipera SJ (1985) Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River Valley. Contrib Mineral Petrol 89:69–80

    Article  Google Scholar 

  • Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metamorph Geol 3:231–243

    Article  Google Scholar 

  • Powell R, Evans JA (1983) A new geobarometer for the assemblage biotite-muscovite-chlorite-quartz. J Metamorphic Geol 1:331–336

    Article  Google Scholar 

  • Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Powell R, Condliffe DM, Condliffe E (1984) Calcite-dolomite geothermometry in the system CaCO3–MgCO3–FeCO3: an experimental study. J Metamorph Geol 2:33–41

    Article  Google Scholar 

  • Pownceby MI, Wall VJ, O’Neill HSC (1987) Fe–Mn partitioning between garnet and ilmenite: experimental calibration and applications. Contrib Mineral Petrol 97:116–126

    Article  Google Scholar 

  • Pownceby MI, Wall VJ, O’Neill HStC (1991) An experimental study of the effect of Ca upon garnet—ilmenite Fe-Mn exchange equilibria. Am Mineral 76:1580–1588

    Google Scholar 

  • Pyle JM, Spear FS (2000) An empirical garnet (YAG)–xenotime thermometer. Contrib Mineral Petrol 138:51–58

    Article  Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL et al (2001) Monazite-xenotine-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Ravna EJK (2000a) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe–Mg geothermometer. Lithos 53:265–277

    Article  Google Scholar 

  • Ravna EJK (2000b) The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J Metamorphic Geol 18:211–219

    Article  Google Scholar 

  • Ravna EJK, Paquin J (2003) Thermobarometric methodologies applicable to eclogites and garnet ultrabasites. In: Carswell DA, Compagnoni R (eds) High pressure metamorphism. European mineralogical union notes in mineralogy, vol 5. Eötvos University Press, Budapest, pp 229–259

    Google Scholar 

  • Ravna EJK, Terry MP (2004) Geothermobarometry of UHP and HP eclogites and schists—an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. J Metamorph Geol 22:593–604

    Article  Google Scholar 

  • Rejebian VA, Harris AG, Huebner S (1987) Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol Soc Am Bull 99:471–479

    Article  Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate triple point. Am J Sci 267:259–272

    Article  Google Scholar 

  • Sack RO (1980) Some constraints on the thermodynamic mixing properties of Fe–Mg ortho-pyroxenes and olivines. Contrib Mineral Petrol 71:257–269

    Article  Google Scholar 

  • Saxena SK (1976) Two-pyroxene geothermometer: a model with an approximate solution. Am Mineral 61:643–652

    Google Scholar 

  • Schmadicke E (2000) Phase relations in perodotic and pyroxenitic rocks in the model system CMASH and NCMASH. J Petrol 41:69–86

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Scott SD (1973) Experimental calibration of the sphalerite geobarometer. Econ Geol 68:466–474

    Article  Google Scholar 

  • Scott SD (1976) Application of the sphalerite geobarometer to regionally metamorphosed terrains. Am Mineral 61:661–670

    Google Scholar 

  • Seitz H-M, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clynopyroxene in peridotitic and websteritic xenoliths: new empirical geothermometers. Geochim Cosmochim Acta 63:3967–3982

    Article  Google Scholar 

  • Selverstone J, Spear FS, Franz G et al (1984) High-pressure metamorphism in the SW Tauern Window, Austria: P-T paths from hornblende-kyanite-staurolite schists. J Petrol 25:501–531

    Article  Google Scholar 

  • Sengupta P, Dasgupta S, Bhattacharya PK et al (1990) An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks. J Metamorphic Geol 8:191–198

    Article  Google Scholar 

  • Shulters JC, Bohlen SR (1989) The stability of hercynite and hercynite-gahnite spinels in corundum- or quartz-bearing assemblages. J Petrol 30:1017–1031

    Article  Google Scholar 

  • Skublov S, Drugova G (2003) Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade. Can Mineral 41:383–392

    Article  Google Scholar 

  • Spear FS (1986) PTPATH: a Fortran program to calculate pressure-temperature paths from zoned metamorphic garnets. Comput Geosci 12:247–266

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington

    Google Scholar 

  • Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Mineral Petrol 101:149–164

    Article  Google Scholar 

  • Spear FS, Selverstone J (1983) Quantitative P-T paths from zoned minerals: theory and tectonic application. Contrib Mineral Petrol 83:348–357

    Article  Google Scholar 

  • Spear FS, Peacock SM, Kohn MJ et al (1991) Computer programs for petrologic P-T-t path calculations. Am Mineral 76:2009–2012

    Google Scholar 

  • Stephenson NCN (1984) Two-pyroxene thermometry of Precambrian granulites from Cape Riche, Albany-Fraser Province, Western Australia. J Metamorph Geol 2:297–314

    Article  Google Scholar 

  • Stormer JC JC Jr (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron–titanium oxides. Am Mineral 68:586–594

    Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb Mineral Abh 172:381–408

    Google Scholar 

  • Thomas JB, Watson EB, Spear FS et al (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160:743–759

    Article  Google Scholar 

  • Thompson AB, Frey M (1984) Illite ‘crystallinity’ in the Western River Formation and its significance regarding the regional metamorphism of the early Proterozoic Goulburn Group, District of Mackenzie. Current Research, Part A. Geological Survey of Canada, Paper 84-1A

    Google Scholar 

  • Tiechmuller M (1987) Organic material and very low grade metamorphism. In: Frey M (ed) Low temperature metamorphism. Blackie, Glasgow, pp 114–161

    Google Scholar 

  • Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile-thermometer. J Metamorph Geol 25:703–713

    Article  Google Scholar 

  • Triboulet C (1992) The (Na–Ca) amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A–F–M–C–N–H2O. 1. An empirical calibration. J Metamorphic Geol 10:545–556

    Article  Google Scholar 

  • Vance D, Holland T (1993) A detailed isotopic and petrological study of a single garnet from the Gassetts schist, Vermont. Contrib Mineral Petrol 114:101–118

    Article  Google Scholar 

  • Vernon RH (1977) Relationships between microstructural and metamorphic assemblages. Tectonophysics 39:439–452

    Article  Google Scholar 

  • Vidal O, Parra T (2000) Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. Geol Mag 35:139–161

    Google Scholar 

  • Vidal O, Goffe B, Bousquet R et al (1999) Calibration and testing of an empirical chloritoid-chlorite Mg–Fe exchange thermometer and thermodynamic data for daphnite. J Metamorph Geol 17:25–39

    Article  Google Scholar 

  • Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311

    Article  Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminium pertitioning between olivine and spinel as a geothermometer. Am Mineral 93:1142–1147

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Waters DJ, Martin HN (1993) Geobarometry in phengite-bearing eclogites. Terra Abstr 5:410–411

    Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Will T, Okrush M, Schmaedicke E et al (1998) Phase relations in the greenschist- blueschist-amphibolite-eclogite facies in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–CO2–H2O (NCFMASH) with application to metamorphic rocks from Samos, Greece. Contrib Mineral Petrol 104:353–386

    Article  Google Scholar 

  • Wood BJ, Fraser DG (1976) Elementary thermodynamics for geologist. Oxford University Press, London

    Google Scholar 

  • Wu CM (2015) Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. J Metamorphic Geol 33:167–176

    Article  Google Scholar 

  • Wu CM (2017) Calibration of the Al2SiO5-quartz geobarometer for metapelites. J Metamorph Geol 35:993–998

    Article  Google Scholar 

  • Wu CM, Pan YS, Wang KY (1999) Refinement of the biotite-orthopyroxene geothermometer with applications. Acta Petrol Sinica 15:463–468

    Google Scholar 

  • Wu CM, Pan YS, Wang KY et al (2002) A report on a biotite-calcic hornblende geothermometer. Acta Geol Sinica 76:126–131

    Google Scholar 

  • Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J Petrol 45:1907–1921

    Article  Google Scholar 

  • Wu CM, Zhao GC (2006) Recalibration of the garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz (GMPQ) geobarometer for metapelitic assemblages. J Petrol 47:2357–2368

    Article  Google Scholar 

  • Wu CM, Zhao GC (2007a) A recalibration of the garnet-olivine geothermometer and a new geobarometer for garnet-olivine-plagioclase-bearing granulites. J Metamorphic Geol 25:497–505

    Article  Google Scholar 

  • Wu CM, Zhao GC (2007b) The metapelitic garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) geobarometer. Lithos 97:365–372

    Article  Google Scholar 

  • Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148:471–488

    Article  Google Scholar 

  • Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Miner Mag 68:769–786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Reverdatto .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., Kolobov, V.Y. (2019). Mineral Geothermobarometry. In: The Nature and Models of Metamorphism. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-03029-2_2

Download citation

Publish with us

Policies and ethics