Advertisement

Optimal Dimensioning of Electrical Distribution Networks Considering Stochastic Load Demand and Voltage Levels

  • Esteban IngaEmail author
  • Miguel CampañaEmail author
  • Roberto HincapiéEmail author
  • Oswaldo Moscoso-ZeaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 833)

Abstract

This work presents a model of optimal dimensioning of electrical distribution networks that uses real scenarios, georeferenced and contrasted by simulation processes that analyze the deployment and variables within the planning of electrical networks. This model considers a stochastic load demand and the voltage levels of the electrical distribution network. Moreover, this work exposes the sizing of the radial electrical network, the possible conditions to avoid a load imbalance and in this way, to prevent a system failure.

Keywords

Electrical distribution networks Dimensioning Optimization Planning Scalability Smart grid 

Notes

Acknowledgment

This work has been produced thanks to the support of the GIREI - Intelligent Electrical Networks Research Group of the Universidad Politécnica Salesiana Ecuador under the project Infrastructure of Advanced Measurement and Response of Electric Power Demand in Smart Grid.

References

  1. 1.
    Abeysinghe, S., Wu, J., Sooriyabandara, M., Abeysekera, M., Xu, T., Wang, C.: Topological properties of medium voltage electricity distribution networks. Appl. Energy (2017).  https://doi.org/10.1016/j.apenergy.2017.06.113CrossRefGoogle Scholar
  2. 2.
    Alhamwi, A.: OpenStreetMap data in modelling the urban energy infrastructure: a first assessment and analysis. Energy Procedia 142, 1968–1976 (2017).  https://doi.org/10.1016/j.egypro.2017.12.397CrossRefGoogle Scholar
  3. 3.
    Anuranj, N.J., Mathew, R.K., Ashok, S., Kumaravel, S.: Resiliency based power restoration in distribution systems using microgrids. In: 2016 IEEE 6th International Conference on Power Systems (ICPS) (2016).  https://doi.org/10.1109/ICPES.2016.7584186
  4. 4.
    Bajpai, P., Chanda, S., Srivastava, A.K.: A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral. IEEE Trans. Smart Grid 3053(c), 1 (2016).  https://doi.org/10.1109/TSG.2016.2623818CrossRefGoogle Scholar
  5. 5.
    Campaña, M., Inga, E., Hincapié, R.: Optimal placement of universal data aggregation points for smart electric metering based on hybrid wireless. In: CEUR Workshop Proceedings, vol. 1950 (2017)Google Scholar
  6. 6.
    Chen, Y.: Optimal weighted Voronoi diagram method of distribution network planning considering city planning coordination factors. In: 2017 4th International Conference on Systems and Informatics (ICSAI) (Icsai), vol. 1, pp. 335–340 (2017).  https://doi.org/10.1109/ICSAI.2017.8248314
  7. 7.
    Davidescu, G., Stutzle, T., Vyatkin, V.: Network planning in smart grids via a local search heuristic for spanning forest problems. In: IEEE International Symposium on Industrial Electronics, pp. 1212–1218 (2017).  https://doi.org/10.1109/ISIE.2017.8001418
  8. 8.
    Dimitrijevic, S., Rajakovic, N.: Service restoration of distribution networks considering switching operation costs and actual status of the switching equipment. IEEE Trans. Smart Grid 6(3), 1227–1232 (2015).  https://doi.org/10.1109/TSG.2014.2385309CrossRefGoogle Scholar
  9. 9.
    Esmaeeli, M., Kazemi, A., Shayanfar, H.A., Haghifam, M.R.: Sizing and placement of distribution substations considering optimal loading of transformers. Int. Trans. Electr. Energy Syst. Int. (2014).  https://doi.org/10.1002/etep
  10. 10.
    Gouin, V., Member, S., Raison, B.: Innovative planning method for the construction of electrical distribution network master plans. Sustain. Energy Grids Netw. (2017).  https://doi.org/10.1016/j.segan.2017.03.004CrossRefGoogle Scholar
  11. 11.
    Han, X., Liu, J., Liu, D., Liao, Q., Hu, J., Yang, Y.: Distribution network planning study with distributed generation based on Steiner tree model. In: 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), vol. 1, pp. 1–5 (2014).  https://doi.org/10.1109/APPEEC.2014.7066185
  12. 12.
    Hemphill, M., South, N.: Electricity distribution system planning for an increasing penetration of plug-in electric vehicles in New South Wales. In: 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6 (2012)Google Scholar
  13. 13.
    Inga, E., Céspedes, S., Hincapié, R., Cárdenas, A.: Scalable route map for advanced metering infrastructure based on optimal routing of wireless heterogeneous networks. IEEE Wirel. Commun. 24(April), 1–8 (2017).  https://doi.org/10.1109/MWC.2017.1600255CrossRefGoogle Scholar
  14. 14.
    Inga, J., Inga, E., Hincapié, R., Cristina, G.: Optimal planning for deployment of FiWi networks based on hybrid heuristic process. Latin Am. Trans. IEEE (Revista IEEE Am. Latina) 15(9), 1684–1690 (2017).  https://doi.org/10.1109/TLA.2017.8015053CrossRefGoogle Scholar
  15. 15.
    Inga-Ortega, E., Peralta-Sevilla, A., Hincapié, R.C., Amaya, F., Tafur Monroy, I.: Optimal dimensioning of FiWi networks over advanced metering infrastructure for the smart grid. In: 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), pp. 30–35 (2015).  https://doi.org/10.1109/ISGT-LA.2015.7381125
  16. 16.
    Inga-ortega, J., Inga-ortega, E., Gómez, C.: Electrical load curve reconstruction required for demand response using compressed sensing techniques. In: IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) (2017).  https://doi.org/10.1109/ISGT-LA.2017.8126731
  17. 17.
    Jiménez-Estévez, G.A., Vargas, L.S., Marianov, V.: Determination of feeder areas for the design of large distribution networks. IEEE Trans. Power Deliv. 25(3), 1912–1922 (2010).  https://doi.org/10.1109/TPWRD.2010.2042468CrossRefGoogle Scholar
  18. 18.
    Kahveci, O., Overbye, T.J., Putnam, N.H., Soylemezoglu, A.: Optimization framework for topology design challenges in tactical smart microgrid planning. In: 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, pp. 1–7 (2016).  https://doi.org/10.1109/PECI.2016.7459262
  19. 19.
    Li, J., Ma, X.Y., Liu, C.C., Schneider, K.P.: Distribution system restoration with microgrids using spanning tree search. IEEE Trans. Power Syst. 29(6), 3021–3029 (2014).  https://doi.org/10.1109/TPWRS.2014.2312424CrossRefGoogle Scholar
  20. 20.
    Lu, Z., Wang, S., Ge, S., Wang, C.: Substation planning method based on the weighted Voronoi diagram using an intelligent optimisation algorithm. IET Gener. Transm. Distrib. 8(October 2013), 2173–2182 (2014).  https://doi.org/10.1049/iet-gtd.2013.0614CrossRefGoogle Scholar
  21. 21.
    Mam, M.: Improved K-means clustering based distribution planning on a geographical network. I. J. Intell. Syst. Appl. 9(April), 69–75 (2017).  https://doi.org/10.5815/ijisa.2017.04.08CrossRefGoogle Scholar
  22. 22.
    Mateo, C., et al.: Electrical power and energy systems European representative electricity distribution networks. Electr. Power Energy Syst. 99(July 2017), 273–280 (2018).  https://doi.org/10.1016/j.ijepes.2018.01.027CrossRefGoogle Scholar
  23. 23.
    Montoya, D.P., Ramirez, J.M.: A minimal spanning tree algorithm for distribution networks configuration. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2012).  https://doi.org/10.1109/PESGM.2012.6344718
  24. 24.
    Nagarajan, A., Ayyanar, R.: Application of minimum spanning tree algorithm for network reduction of distribution systems. In: North American Power Symposium (NAPS), pp. 1–5 (2014).  https://doi.org/10.1109/NAPS.2014.6965353
  25. 25.
    Peralta, A., Inga, E., Hincapié, R.: FiWi network planning for smart metering based on multistage stochastic programming. Latin Am. Trans. IEEE (Revista IEEE Am. Latina) 13(12), 3838–3843 (2015).  https://doi.org/10.1109/TLA.2015.7404917CrossRefGoogle Scholar
  26. 26.
    Peralta, A., Inga, E., Hincapié, R.: Optimal scalability of FiWi networks based on multistage stochastic programming and policies. J. Opt. Commun. Netw. 9(12), 1172 (2017).  https://doi.org/10.1364/JOCN.9.001172CrossRefGoogle Scholar
  27. 27.
    Shi, J., Qiao, Y., Wang, Y., Wen, J., Tong, J., Zhang, J.: The planning of distribution network containing distributed generators based on mixed integer linear programming. In: 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 5–9 (2015).  https://doi.org/10.1109/DRPT.2015.7432303
  28. 28.
    Wang, S., Lu, Z., Ge, S., Wang, C.: An improved substation locating and sizing method based on the weighted Voronoi diagram and the transportation model. J. Appl. Math. 24, 1–8 (2014).  https://doi.org/10.1155/2014/810607CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Politécnica SalesianaQuitoEcuador
  2. 2.Universidad Pontificia BolivarianaMedellínColombia
  3. 3.Universidad Tecnológica EquinoccialQuitoEcuador

Personalised recommendations