Advertisement

Spectral Image Fusion for Increasing the Spatio-Spectral Resolution Through Side Information

  • Andrés Jerez
  • Hans GarciaEmail author
  • Henry Arguello
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 833)

Abstract

Compressive spectral imaging (CSI) allows the acquisition of the spectral information of a three-dimensional scenes by using coded projections in a sensor with lower dimension. However, the compressed sampling of information with simultaneously high spatial and high spectral resolution demands expensive high-resolution sensors. One of the main challenges in CSI is to obtain a high-quality image of high-resolution reconstructions using low-cost architectures. Single pixel camera is an approach that has had a high impact in spectroscopy, due to its low-cost implementation compared to CSI architectures with 2D sensors. On the other hand, recent works have been shown that image fusion using measurements from a CSI sensor based on side information leads to improvement in the quality of the fused image. This work proposes a spectral image fusion methodology for increasing the spatio-spectral resolution through side information and at the same time improve the reconstruction quality of the data cube with a low-cost architecture, optimizing the similarity of the reconstructed spectral image with each sensor. Simulations and experimental results for the proposed methodology show that improve the quality of the reconstruction in up to 11 dB with respect to the traditional approach of upsampling the single pixel image reconstruction through bilinear interpolation.

Keywords

Spectral imaging Compressive sensing Single pixel Grayscale image Data fusion Side information 

Notes

Acknowledgment

The authors gratefully acknowledge the optics laboratory from the High Dimensional Signal Processing (HDSP) research group for the assistance on the experimental tests. The scientific cooperation agreement subscribed between Universidad Autónoma de Bucaramanga (UNAB) and Universidad Industrial de Santander (UIS) through the summons Programa Generación ConCiencia-GEN 2017 (No. 006) for supporting this work registered under the project titled: Algoritmo de fusión de imágenes espectrales en el dominio comprimido para el aumento de la resolución espacio-espectral.

References

  1. 1.
    Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 10901 (2014)CrossRefGoogle Scholar
  2. 2.
    Manolakis, D.G.: Detection algorithms for hyperspectral imaging applications. IEEE Sig. Process. Mag. 19, 29–43 (2002)CrossRefGoogle Scholar
  3. 3.
    Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Lincoln Lab. J. 14(1), 3–28 (2003)Google Scholar
  4. 4.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Correa, C.V., Arguello, H., Arce, G.R.: Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging. J. Opt. Soc. Am. A 33(12), 2312–2322 (2016)CrossRefGoogle Scholar
  6. 6.
    Duarte, M., et al.: Single-pixel imaging via compressive sampling. IEEE Sig. Process. Mag. 25(2), 1–19 (2008)CrossRefGoogle Scholar
  7. 7.
    Lin, X., Liu, Y., Wu, J., Dai, Q.: Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph. 33(6), 233:1–233:11 (2014)CrossRefGoogle Scholar
  8. 8.
    Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)CrossRefGoogle Scholar
  9. 9.
    Lin, X., Wetzstein, G., Liu, Y., Dai, Q.: Dual-coded compressive hyperspectral imaging. Opt. Lett. 39, 2044–2047 (2014)CrossRefGoogle Scholar
  10. 10.
    Cao, X., Du, H., Tong, X., Dai, Q., Lin, S.: A prism-mask system for multispectral video acquisition. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011)CrossRefGoogle Scholar
  11. 11.
    Carin, L., Yuan, X., Brady, D., Tsai, T.H., Zhu, R., Llul, P.: Compressive hyperspectral imaging with side information. IEEE J. Sel. Topics Sig. Process. 9(6), 964–976 (2015)CrossRefGoogle Scholar
  12. 12.
    Espitia, O., Castillo, S., Arguello, H.: Compressive hyperspectral and multispectral imaging fusion. In: Proceedings of SPIE, p. 9840 (2016)Google Scholar
  13. 13.
    Galvis, L., Lau, D., Ma, X., Arguello, H., Arce, G.R.: Coded aperture design in compressive spectral imaging based on side information. Appl. Opt. 56(22), 6332 (2017)CrossRefGoogle Scholar
  14. 14.
    Warnell, G., Bhattacharya, S., Chellappa, R., Basar, T.: Adaptive-rate compressive sensing using side information. IEEE Trans. Image Process. 24(11), 3846–3857 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projections for sparse reconstruction: application to compressed sensing and other inverse problems. J. Sel. Topics Sig. Process. IEEE 1(1), 586–598 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversidad Industrial de SantanderBucaramangaColombia
  2. 2.Department of Electrical EngineeringUniversidad Industrial de SantanderBucaramangaColombia
  3. 3.Department of Computer ScienceUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations