Advertisement

Comparison of Evolutionary Algorithms for Estimation of Parameters of the Equivalent Circuit of an AC Motor

  • Guillermo A. Ramos
  • Jesus A. LopezEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 833)

Abstract

This work shows the comparison of three evolutionary algorithms used to estimate the parameters of the equivalent circuit of a three-phase induction motor. The evolutionary algorithms utilized are Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and, Bacteria Foraging Optimization (BFO). The number of executions needed to obtain confident results is calculated using statistical methods. With this value, each algorithm is used to estimate the parameters of the equivalent circuit of AC motor and, a comparison is done to select the best technique to use in a device which will estimate the efficiency of an AC motor at its operation place. The simulations show that a good selection to this application is the PSO technique.

Keywords

Evolutionary algorithms Estimation of parameters AC motor Comparison of algorithms 

References

  1. 1.
    Santos, V.S.: Procedimiento para determinar la eficiencia de motores asincrónicos en presencia de desbalance y armónicos en la tensión. Tesis doctoral, Universidad Central de las Villas, Santa Clara, Cuba (2014)Google Scholar
  2. 2.
    Gómez, J.R.: Determinación de la eficiencia de los motores asincrónicos con tensiones desbalanceadas en condiciones de campo. Tesis doctoral, Universidad Central de las Villas, Santa Clara, Cuba (2006)Google Scholar
  3. 3.
    Valencia García, D.F., et al.: Estudio Del Efecto De La Distorsión Armónica De Tensión Sobre La Eficiencia Y La Potencia Del Motor Trifásico De Inducción Mediante Modelos Eléctricos Y Térmicos. Proyecto grado maestría en ingeniería énfasis en energética. Universidad autónoma de occidente (2014)Google Scholar
  4. 4.
    Gómez, J.R., Quispe, E.C., De Armas, M.A., Viego, P.R.: Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms. In: 18th International Conference on Electrical Machines, ICEM 2008, pp. 1–4. IEEE (2008)Google Scholar
  5. 5.
    Sakthivel, V.P., Subramanian, S.: On-site efficiency evaluation of three-phase induction motor based on particle swarm optimization. Energy 36(3), 1713–1720 (2011)CrossRefGoogle Scholar
  6. 6.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. Control Syst. 22(3), 52–67 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mateu, E., Casal, J.: Tamaño de la muestra. Rev. Epidem. Med. Prev. 1, 8–14 (2003)Google Scholar
  8. 8.
    Alonge, F., et al.: Parameter identification of induction motor model using genetic algorithms. IEE Proc.-Control Theory. Appl. 145, 587–593 (1998)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J.: Particle swarm optimization. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-1153-7_200581CrossRefGoogle Scholar
  10. 10.
    Muñoz, M.A., López, J.A., Caicedo, E.F.: Inteligencia de enjambres: sociedades para la solución de problemas (una revisión) Ingeniería e Investigación. Universidad Nacional 2008, vol. 28, no. 2, pp. 119–130 (2008)Google Scholar
  11. 11.
    Koza, J.R.: Genetic Programing. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
  13. 13.
    Song, H.M., Ibrahim, W.I., Abdullah, N.R.H.: Optimal load frequency control in single area power system using PID controller based on bacterial foraging & particle swarm optimization. ARPN J. Eng. Appl. Sci. 10(22), 10733–10739 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Servicio Nacional de Aprendizaje–SENACaliColombia
  2. 2.Departamento de Automática y ElectrónicaUniversidad Autónoma de OccidenteCaliColombia

Personalised recommendations