Skip to main content

Weather, Climate and Global Warming

  • Chapter
  • First Online:
Environmental Geoinformatics

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1234 Accesses

Abstract

In order to fully appreciate the contribution of geoinformatics in monitoring climate change caused by increase in temperature, a distinction between weather and climate , on one hand, and climate variability and climate change , on the other hand, is essential.

All across the world, in every kind of environment and region known to man, increasingly dangerous weather patterns and devastating storms are abruptly putting an end to the long-running debate over whether or not climate change is real. Not only is it real, it’s here, and its effects are giving rise to a frighteningly new global phenomenon: the man-made natural disaster.

—Barrack Obama, April 3, 2006

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.clarklabs.org/applications/REDD.cfm.

  2. 2.

    European Centre for Medium-Range Weather Forecasts.

  3. 3.

    see e.g., http://www.nasa.gov/mission_pages/noaa-n/main/index.html.

  4. 4.

    http://www.bbc.co.uk/news/science-environment-20653018.

  5. 5.

    Thematic mapper.

  6. 6.

    http://landsat.gsfc.nasa.gov/about/L7_td.html.

  7. 7.

    High-Resolution Visible and Infrared (imaging instrument). See http://www.cnes.fr/web/CNES-en/7114-home-cnes.php.

  8. 8.

    Advanced Very High Resolution Radiometer.

  9. 9.

    Laser Infrared Detection And Ranging.

  10. 10.

    High Resolution Visible.

  11. 11.

    Synthetic Aperture Radar.

References

  1. Burroughs WJ (2007) Climate change: a multidisciplinary approach, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Houghton RA (2005) Above ground forest biomass and the global carbon balance. Global Change Biol 11:945–958

    Article  Google Scholar 

  3. IPCC (Intergovernmental Panel on Climate Change) (2007) Contribution of working group I to the fourth assessment report

    Google Scholar 

  4. Krabill WE, Hanna P, Huybrechts W, Abdalati J, Cappelen B, Csatho B, Frefick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. https://doi.org/10.1029/2004GL021533

    Article  Google Scholar 

  5. Martens WJM, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995) Potential impact of global climate change on malaria risk. Environ Health Perspect 103:458–464

    Article  Google Scholar 

  6. Martens WJM (1998) Health impacts of climate change and ozone depletion: an ecoepidemiologic modeling approach. Health Perspect 106:241–251

    Google Scholar 

  7. Uriel K (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445

    Article  Google Scholar 

  8. Steffen W, Sanderson A, Tyson PD, Jger J, Matson PA, Moore BIII, Oldfield F, Richardson K, Schellnhuber HJ, Turner BLII, Wasson RJ (2005) Global change and the earth system: a planet under pressure. Springer, Berlin

    Google Scholar 

  9. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of anthropogenic and natural forcing to recent Tropopause height changes. Science 301:479–483

    Article  Google Scholar 

  10. Santer BD, Wigley TML, Simmons AJ, Kallberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Bruggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109. https://doi.org/10.1029/2004JD005075

  11. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect influences on climate. Meteorol Z 12(3):131–136

    Article  Google Scholar 

  12. Nyakwada W (2000) The use of weather and climate forecasts by rural people to enhance food production. In: Akunda E, Mango C, Oteng’l SBB et al (eds) Sustainable environmental management for poverty alleviationin the Lake Victoria Basin. KMFRI, pp 38–42

    Google Scholar 

  13. Atheru ZKK, Ogallo LA, Ambenje PG (2000) Regional climate forecasts for enhanced food production to alleviate rural poverty around the Lake Victoria region. KMFRI, pp 28–30

    Google Scholar 

  14. Otengi SBB (2000) Weather and climate hazards that affect food production in the Lake Victoria Basin. In: Akunda E, Mango C, Oteng’i SBB et al (eds) Sustainable environmental management for poverty alleviation in the Lake Victoria Basin, Kisii 3–5 Oct 1995. KMFRI, pp 24–27

    Google Scholar 

  15. Okoola RE (2000) Climate change as related to food production for the alleviation of rural poverty in the Lake basin region. In: Akunda E, Mango C, Oteng’i SBB et al (eds) Sustainable environmental management for poverty alleviation in the Lake Victoria Basin. KMFRI, pp 43–45

    Google Scholar 

  16. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  17. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australiaś worst droughts? Geophys Res Lett 36:L04706. https://doi.org/10.1029/2008GL036801

    Article  Google Scholar 

  18. Phillips S (2006) Water crisis. COSMOS, issue 9, June. http://www.cosmosmagazine.com/issues/2006/9/

  19. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323(5915):753. https://doi.org/10.1126/science.1166510

    Article  Google Scholar 

  20. Magadza CHD (1996) Climate change: some likely multiple impacts in southern Africa. In: Downing TE (ed) Climate change and world food security. Springer, Heidelberg, pp 449–483

    Chapter  Google Scholar 

  21. Jallow BP, Barrow MKA, Leatherman SP (1996) Vulnerability of the coastal zone of the Gambia to sea level rise and development of response options. Clim Res 6:165–177

    Article  Google Scholar 

  22. Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP (2007) Lake-level change and water balance analysis at Lake Qinghai, West China during recent decades. Water Resour Manag 21:1505–1516. https://doi.org/10.1007/s11269-006-9096-1

    Article  Google Scholar 

  23. Manneh A (1997) Vulnerability of the water resources sector of The Gambia to climate change. In: Republic of The Gambia: final report of The Gambia/U.S. Country study program project on assessment of the vulnerability of the major economic sectors of the Gambia to the projected climate change. Banjul, The Gambia, (unpublished)

    Google Scholar 

  24. Beaudoin AB (2002) On the identification and characterization of drought and aridity in postglacial paleoenvironmental records from the northern great plains. Gographie Phys et Quatern 56(2–3): 229–246 E-SCAPE contribution 3. Note: volume dated 2002, but published in 2004

    Google Scholar 

  25. Mistry VV, Conway D (2003) Remote forcing of East African rainfall and relationships with fluctuations in levels of Lake Victoria. Int J Clim 23:67–89

    Article  Google Scholar 

  26. Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling Lake Victoria water levels: is climate a contribution factor? J Clim Change 89:287–297. https://doi.org/10.1007/s10584-008-9409-x

    Article  Google Scholar 

  27. Belvis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS Meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  28. Brutsaert W (2005) Hydrology. An introduction, 4th edn. Cambridge University Press, New York

    Google Scholar 

  29. Tao W (2008) Near real-time GPS PPP-inferred water vapour system development and evaluation. M.Sc. thesis, UCGE Reports No. 20275. http://www.geomatics.ucalgary.ca/research/publications. Accessed 26 Aug 2009

  30. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR technical note TN-430, December

    Google Scholar 

  31. Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000b) Real-time national GPS networks: opportunities for atmospheric sensing. Earth Planet Space 52:901–905

    Article  Google Scholar 

  32. Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Belvis M, Businger S (1993) Sensing atmospheric water vapour with the global positioning system. Geophys Res Lett 20(23):2631–2634

    Article  Google Scholar 

  33. Elliot WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Am Meteorol Soc 72:1507–1520

    Article  Google Scholar 

  34. Bjerknes V (1904) Das problem der Wettervorhersage, betrachtet vom Stanpunkt der Mechanik und der Physik. Meteor Zeits 21:1–7

    Google Scholar 

  35. Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  36. Charney JG (1955) The use of primitive equations of motion in numerical prediction. Tellus 7:22–26

    Article  Google Scholar 

  37. Charney JG, Fjørtoft R, von Neuman J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  Google Scholar 

  38. Richardson LF (2007) Weather prediction by numerical process, 2nd edn. Cambridge Mathematical Library (the first edition appeared in 1922)

    Google Scholar 

  39. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin

    Google Scholar 

  40. Awange JL, Grafarend EW, Palánczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  41. Awange JL, Palánczz B (2016) Geospatial algebraic computations-theory and applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  42. Awange JL, Palánczz B, Lewis RH, Völgyesi, L (2016) Mathematical geosciences-hybrid symbolic-numeric methods. Springer International Publishing

    Google Scholar 

  43. Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  44. Bergthorsson P, Döös B (1955) Numerical weather map analysis. Tellus 7:329–340

    Google Scholar 

  45. Poli P (2006) Assimilation of GNSS radio occultation data into numerical weather prediction. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 195–204

    Google Scholar 

  46. US Climate Change Science Program (CCSP) (2008) Reanalysis of historical climate data for key atmospheric features: Implications for attribution of causes of observed change. A report by the U.S. climate change science program and the subcommittee on global change research. In: Dole RM, Hoerling M, Schubert S (eds) National oceanic and atmospheric administration. National Climatic Data Center, Asheville, NC, p 156

    Google Scholar 

  47. Talagrand O (1997) Assimilation of observations, an introduction. J Meteorol Soc Jpn. Spec Issue 75(1B):191–209

    Article  Google Scholar 

  48. Jiang H, Apps MJ, Peng CH, Zhang YL, Liu JX (2002) Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol Manage 169:65–82

    Article  Google Scholar 

  49. Myneni RB, Dong JR, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hudges MK (2001) A large carbon sink in the woody biomass of Northern forest. Proc Nat Acad Sci 98:14784–14789

    Article  Google Scholar 

  50. Patenaude G, Milne R, Dawson TP (2005) Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto protocol. Environ Sci Policy 8(2):161–178

    Article  Google Scholar 

  51. Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of philosophy. Dissertation. University of Mines and Technology, Ghana, 165pp

    Google Scholar 

  52. Bonino EE (2006) Changes in carbon pools associated with land-use gradient in the dry Chaco, Argentina. Forest Ecol Manag 223:181–189

    Article  Google Scholar 

  53. Tutu BD (2008) Assessing the effects of land-use/cover change on ecosystem services in Ejisu-Juaben District, Ghana. M.Sc, thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, 88p

    Google Scholar 

  54. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:45–23

    Google Scholar 

  55. Fearnside PM, Laurance WF (2003) Determination of deforestration rates of the world’s humid tropical forests. Science 299:10–15

    Article  Google Scholar 

  56. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  Google Scholar 

  57. Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Oceanic Sci 11:157–186

    Article  Google Scholar 

  58. Syndergaard S, Kuo Y-H, Lohmann MS (2006) Observation operators for the assimilation of occultation data into atmospheric models: a review. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 205–224

    Google Scholar 

  59. Healey SB, Thépaut JN (2006) Assimilation experiment with CHAMP GPS radio occultation measurements. Quart J Roy Met 132:605–623. https://doi.org/10.1256/qj.04.182

    Article  Google Scholar 

  60. Healey SB, Jupp AM, Marquardt C (2005) Forecast impact experiment with GPS radio occultation measurements. Geophys Res Lett 32: L03804.1-L03804.4

    Google Scholar 

  61. Poli P, Pailleux J, Ducrocq V, Moll P, Rabier F, Mauprivez M, Dufour S, Grondin M, Lechat-Carvalho F, De Latour A, Issler J, Ries L (2008) Weather report. Meteorological applications of GNSS from space and on the ground. Inside GNSS 3(8): 30–39

    Google Scholar 

  62. Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Solar-Terr Phys 63(12):1305–1314

    Article  Google Scholar 

  63. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18

    Google Scholar 

  64. Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. In: Accepted to the international civil engineering conference on sustainable development in the 21st Century “The Civil Engineer in Development” 12–16 Aug 2003 Nairobi, Kenya

    Google Scholar 

  65. Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delay. Ann Geophys 18:223–234

    Article  Google Scholar 

  66. Randall DA, Tjemkes S (1991) Clouds, the Earth’s radiation budget and the hydrological cycle. Palaeogeogr Palaeoclimatol Palaeoecol 90:3–9

    Google Scholar 

  67. Belvis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  68. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapour mapping from interferometric radar measurements. Science 283:1297–1299

    Article  Google Scholar 

  69. Foelsche U, Gobiet A, Steiner AK, Borsche M, Wickert J, Schmidt T, Kirchengast G (2006) Global climatologies based on radio occultation data: the CHAMPCLIM project. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 303–314

    Google Scholar 

  70. IPCC (2001) Climate change 2001: the scientific basis. Cambridge Univ Press, Cambridge, p 881

    Google Scholar 

  71. Stendel M (2006) Monitoring climate variability and change by means of GNSS data. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 275–285

    Google Scholar 

  72. Schröder T, Leroy S, Stendel M, Kaas E (2003) Stratospheric temperatures probed by Microwave Sounding Units or by occultation of the global positioning system. Geophys Res Lett 30. https://doi.org/10.1029/2003GL017588

  73. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using global positioning system. J Geophys Res 102(D19):23429–23465

    Article  Google Scholar 

  74. Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate-change using the global positioning system. J Geophys Res 98(D8):14925–14937

    Article  Google Scholar 

  75. Leroy SS, Dykema JA, Anderson JG (2006) Climate benchmarking using GNSS occultation. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 287–301

    Google Scholar 

  76. Foelsche U, Kirchengast G, Steiner AK (2006) Atmosphere and climate. Studies by occultation methods, Springer, Berlin

    Book  Google Scholar 

  77. Leroy SS (1997) Measurements of geopotential heights by GPS radio occultation. J Geophys Res 102:6971–6986

    Article  Google Scholar 

  78. Christy JR, Spencer RW, Norris WB, Braswell WD, Parker DE (2003) Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J Atmos Oceanic Technol 20 (5): 613–629

    Google Scholar 

  79. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: dataset construction and radiosonde comparisons. J Atmos Oceanic Technol 17:1153–1170

    Article  Google Scholar 

  80. Mears C, Schabel M, Wents F (2003) A reanalysis of MSU channel 2 tropospheric temperature trend. J Clim 16(22):3560–3664

    Article  Google Scholar 

  81. Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science, 269–272

    Google Scholar 

  82. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. https://doi.org/10.1029/2006JD007363

  83. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. https://doi.org/10.1029/2008GL034012

    Article  Google Scholar 

  84. Pan LL, Randel WJ, Gary BL, Mahony MJ, Hintsa EJ (2004) Definitions and sharpness of the extratropical tropopause: a trace gas perspective. J Geophys Res 109. https://doi.org/10.1029/2004JD004982

  85. WMO (1957) Definition of tropopause. World Meteorological Organisation, Geneva, Geneva

    Google Scholar 

  86. Shea DJ, Wifley SJ, Stern IR, Hoar TJ (1994) An introduction to atmospheric and oceanographic data. NCAR Tech, Note

    Google Scholar 

  87. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B et al (1996) GPS sounding of atmosphere from low earth orbit: preliminary results. Bull Am Meteorol Soc 77:19–40

    Article  Google Scholar 

  88. Rocken C, Anthes R, Exner M, Hunt D, Sokolovski S, Ware R, Gorbunov M, Schreiner S, Feng D, Hermann B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29860

    Article  Google Scholar 

  89. Anel JA, Gimeno L, Torre LDI, Nieto R (2006) Changes in tropopause. Naturwissenchaften: https://doi.org/10.1007/S00114-006-0147-5

  90. Highwood EJ, Hoskins BJ, Berrisforde P (2000) Properties of the arctic tropopause. Meteorol Soc 126:1515–1532

    Article  Google Scholar 

  91. Nagurny AP (1998) Climatic characteristics of the tropopause over the Arctic Basin Ann Geophys 16:110–115

    Google Scholar 

  92. Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105:15509–15524

    Article  Google Scholar 

  93. Seidel JD, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878

    Article  Google Scholar 

  94. Varotsos C, Cartalis C, Vlamakis A, Tzanis C, Keramitsoglou I (2004) The long-term coupling between column ozone and tropopause properties. J Clim 17:3843–3854

    Article  Google Scholar 

  95. Agudelo PA, Curry JA (2004) Analysis of spatial distribution in tropospheric temperature trends. Geophys Res Lett 31 (L22207): https://doi.org/10.1029/2004GL02818

  96. Christy JR, Spencer RW, Lobl ES (1998) Analysis of the merging procedure for the MSU daily temperature series. J Clim 11:2016–2041

    Article  Google Scholar 

  97. Spencer RW, Christy JR, Grody NC (1990) Global atmospheric temperature monitoring with satellite microwave measurements: methods and results 1979–84. J Clim 3:1111–1128

    Article  Google Scholar 

  98. Parker DE, Gorden M, Cullum DPN, Sexton DMH, Folland CK, Rayner N (1997) A new global gridded radiosonde temperature database and recent temperature trends. Geophys Res Lett 24:1499–1502

    Article  Google Scholar 

  99. Anthes RA, Rocken C, Kuo YH (2000) Applications of COSMIC to meteorology and climate. Terr Atmos Oceanic Sci 11:115–156

    Article  Google Scholar 

  100. Ranson KJ, Sun G, Weishample JF, Knox RG (1997) Forest biomass from combined ecosystem and radar backscatter. Remote Sens Environ 59:118–133

    Article  Google Scholar 

  101. Free M, Seidel DJ (2005) Causes of differing temperature trends in radiosonde upper air data sets. J Geophys Res 110. https://doi.org/10.1029/2004JD005481

  102. Khandu (2008) GPS remote sensing of the Australian tropopause. Curtin University of Technology, Honours dissertation

    Google Scholar 

  103. Pittcock B (2003) Climate change: an Australian guide to the science and potential impacts. Climate Change, Australian Greenhouse Office, Canberra

    Google Scholar 

  104. Bureau of Meteorology, Australia (2009) Australia’s climate change and variability. http://www.bom.gov.au/silo/products/cli_chg/. Accessed 25 Oct 2009

  105. Slaymaker O, Kelly REJ (2007) The cryosphere and global environmental change (Environmental systems and global change series), 1st edn. Wiley-Blackwell, Victoria, Australia

    Google Scholar 

  106. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. J Geophys Res 114 (B06407). https://doi.org/10.1029/2008JB006239

  107. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. https://doi.org/10.1029/2009GL040222

    Article  Google Scholar 

  108. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser Altimetry Mission. Proc IEEE 98(5):735–751. https://doi.org/10.1109/JPROC.2009.2034765

    Article  Google Scholar 

  109. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper

    Google Scholar 

  110. UN (1998) Kyoto Protocol to the United Nations framework convention on climate change: http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 14 July 2010

  111. UNFCCC (2007) Kyoto Protocol reference manual on accounting of emissions and assigned amounts. Framework Convention on Climate Change: http://unfccc.int/kyoto_protocol/items/2830.php

  112. Rosenqvist Å, Imhoff M, Milne A, Dobson C (eds) (1999) Remote sensing and the Kyoto Protocol: a review of available and future technology for monitoring treaty compliance. Ann Arbor, Michigan, USA, 20–22 Oct

    Google Scholar 

  113. Rosenqvist A, Milne T, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto Protocol. Environ Sci Policy 6(5):441–455

    Article  Google Scholar 

  114. Richards TS, Gallego J, Achard F (2000) Sampling for forest cover change assessment at the pantropical scale. Int J Remote Sens 21:1473–1490

    Article  Google Scholar 

  115. Blair JB, Rabine D, Hofton M (1999) The laser vegetation imaging sensor (LVIS): a medium-altitude, digitization only, airborne laser altimeter for mapping. ISPRS 54:115–122

    Article  Google Scholar 

  116. Prince SD, Goward S (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835

    Article  Google Scholar 

  117. Le Toan T, Ribbes F, Floury N, Wang LF, Ding KH, Kong JA, Kurosu Fujita MT (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans Geoscie Remote Sens 35:41–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awange, J., Kiema, J. (2019). Weather, Climate and Global Warming. In: Environmental Geoinformatics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_25

Download citation

Publish with us

Policies and ethics