Skip to main content

Dual-Energy SPECT Imaging with Contrast-Enhanced CT: A Case Study

  • Chapter
  • First Online:
Image Fusion in Preclinical Applications
  • 466 Accesses

Abstract

Preclinical molecular imaging is an invaluable tool to support the discovery and development of clinically relevant imaging and therapeutic reagents. Single-photon emission computed tomography (SPECT) and X-ray computed tomography (CT) are commonly used in clinical nuclear medicine, and these imaging platforms can be utilized in the preclinical setting for discovery, validation, and comparative effectiveness evaluation of novel radiolabeled diagnostic imaging agents. Herein, we discuss these techniques and how we have utilized them to enhance experimental design when evaluating novel radiotracers in vivo. In particular, we focus on the utility of dual-energy SPECT with contrast-enhanced CT and demonstrate how these can be used as exceptional tools for quantitatively and effectively comparing two diagnostic imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levin CS. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging. 2005;32(Suppl 2):S325–45. https://doi.org/10.1007/s00259-005-1973-y.

    Article  PubMed  Google Scholar 

  2. Ziegler S. PET and SPECT. In: Kiessling F, Pichler B, editors. Small animal imaging. Berlin: Springer; 2011. p. 231–6.

    Chapter  Google Scholar 

  3. Madsen MT. Recent advances in SPECT imaging. J Nucl Med. 2007;48(4):661–73.

    Article  Google Scholar 

  4. Bazanez-Borgert M. Basics of SPECT, PET and PET/CT imaging: JASS; 2006.

    Google Scholar 

  5. Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, Im JG. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28(5):1451–9. https://doi.org/10.1148/rg.285075075.

    Article  PubMed  Google Scholar 

  6. Keat N. Report 05016 CT scanner automatic exposure control systems. 2005. http://www.impactscan.org/reports/Report05016. Accessed 2 Feb 2018.

  7. Levine CD, Aizenstein O, Lehavi O, Blachar A. Why we miss the diagnosis of appendicitis on abdominal CT: evaluation of imaging features of appendicitis incorrectly diagnosed on CT. AJR Am J Roentgenol. 2005;184(3):855–9. https://doi.org/10.2214/ajr.184.3.01840855.

    Article  PubMed  Google Scholar 

  8. Aide N, Kinross K, Beauregard JM, Neels O, Potdevin T, Roselt P, Dorow D, Cullinane C, Hicks RJ. A dual radiologic contrast agent protocol for 18F-FDG and 18F-FLT PET/CT imaging of mice bearing abdominal tumors. Mol Imaging Biol. 2011;13(3):518–25. https://doi.org/10.1007/s11307-010-0378-x.

    Article  PubMed  Google Scholar 

  9. Thaiss WM, Sauter AW, Bongers M, Horger M, Nikolaou K. Clinical applications for dual energy CT versus dynamic contrast enhanced CT in oncology. Eur J Radiol. 2015;84(12):2368–79. https://doi.org/10.1016/j.ejrad.2015.06.001.

    Article  PubMed  Google Scholar 

  10. Forghani R, De Man B, Gupta R. Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: Part 2. Neuroimaging Clin N Am. 2017;27(3):385–400. https://doi.org/10.1016/j.nic.2017.03.003.

    Article  PubMed  Google Scholar 

  11. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics. 2011;31(4):1031–46.; ; discussion 1047–50. https://doi.org/10.1148/rg.314105159.

    Article  PubMed  Google Scholar 

  12. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomical imaging in oncology. Nucl Med Commun. 2012;33(4):349–61. https://doi.org/10.1097/MNM.0b013e32834ec8a5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85. https://doi.org/10.1007/s00259-010-1390-8.

    Article  PubMed  Google Scholar 

  14. Bernsen MR, Vaissier PE, Van Holen R, Booij J, Beekman FJ, de Jong M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S36–49.

    Article  Google Scholar 

  15. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, Scheidhauer K, Wester HJ, Rummeny EJ, Schwaiger M, Drzezga A. Spect/Ct. J Nucl Med. 2008;49(8):1305–19. https://doi.org/10.2967/jnumed.107.050195.

    Article  PubMed  Google Scholar 

  16. Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med. 2008;38(3):177–98. https://doi.org/10.1053/j.semnuclmed.2008.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma KH, Huang WS, Chen CH, Lin SZ, Wey SP, Ting G, Wang SD, Liu HW, Liu JC. Dual SPECT of dopamine system using [99mTc]TRODAT-1 and [123I]IBZM in normal and 6-OHDA-lesioned formosan rock monkeys. Nucl Med Biol. 2002;29(5):561–7.

    Article  CAS  Google Scholar 

  18. Martin EB, Williams A, Richey T, Stuckey A, Heidel RE, Kennel SJ, Wall JS. Comparative evaluation of p5+14 with SAP and peptide p5 by dual-energy SPECT imaging of mice with AA amyloidosis. Sci Rep. 2016;6:22695. https://doi.org/10.1038/srep22695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50(22):R45–61. https://doi.org/10.1088/0031-9155/50/22/R01.

    Article  CAS  PubMed  Google Scholar 

  20. Nakazawa A, Ikeda K, Ito Y, Iwase M, Sato K, Ueda R, Dohi Y. Usefulness of dual 67Ga and 99mTc-sestamibi single-photon-emission CT scanning in the diagnosis of cardiac sarcoidosis. Chest. 2004;126(4):1372–6. https://doi.org/10.1378/chest.126.4.1372.

    Article  PubMed  Google Scholar 

  21. Sanchez-Crespo A, Petersson J, Nyren S, Mure M, Glenny RW, Thorell JO, Jacobsson H, Lindahl SG, Larsson SA. A novel quantitative dual-isotope method for simultaneous ventilation and perfusion lung SPET. Eur J Nucl Med Mol Imaging. 2002;29(7):863–75. https://doi.org/10.1007/s00259-002-0803-8.

    Article  PubMed  Google Scholar 

  22. Wall JS, Richey T, Williams A, Stuckey A, Osborne D, Martin E, Kennel SJ. Comparative analysis of peptide p5 and serum amyloid P component for imaging AA amyloid in mice using dual-isotope SPECT. Mol Imaging Biol. 2012;14(4):402–7. https://doi.org/10.1007/s11307-011-0524-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weinmann P, Faraggi M, Moretti JL, Hannequin P. Clinical validation of simultaneous dual-isotope myocardial scintigraphy. Eur J Nucl Med Mol Imaging. 2003;30(1):25–31. https://doi.org/10.1007/s00259-002-0995-y.

    Article  CAS  PubMed  Google Scholar 

  24. Lee S, Gregor J, Kennel SJ, Osborne DR, Wall J. GATE validation of standard dual energy corrections in small animal SPECT-CT. PLoS One. 2015;10(4):e0122780. https://doi.org/10.1371/journal.pone.0122780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2015; https://doi.org/10.1016/S0140-6736(15)01274-X.

    Article  CAS  Google Scholar 

  26. Hazenberg BP, van Rijswijk MH, Piers DA, Lub-de Hooge MN, Vellenga E, Haagsma EB, Hawkins PN, Jager PL. Diagnostic performance of 123I-labeled serum amyloid P component scintigraphy in patients with amyloidosis. Am J Med. 2006;119(4):355 e315–24. https://doi.org/10.1016/j.amjmed.2005.08.043.

    Article  Google Scholar 

  27. Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, Moore SC, Falk RH. Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41(9):1652–62. https://doi.org/10.1007/s00259-014-2787-6.

    Article  CAS  PubMed  Google Scholar 

  28. Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-Florbetaben PET: a pilot study. J Nucl Med. 2016;57(11):1733–9. https://doi.org/10.2967/jnumed.115.169870.

    Article  CAS  PubMed  Google Scholar 

  29. Osborne DR, Acuff SN, Stuckey A, Wall JS. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-Florbetapir. Front Cardiovasc Med. 2015;2:23. https://doi.org/10.3389/fcvm.2015.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rossi P, Tessonnier L, Frances Y, Mundler O, Granel B. 99mTc DPD is the preferential bone tracer for diagnosis of cardiac transthyretin amyloidosis. Clin Nucl Med. 2012;37(8):e209–10. https://doi.org/10.1097/RLU.0b013e318248512c.

    Article  PubMed  Google Scholar 

  31. Wall JS, Martin EB, Richey T, Stuckey AC, Macy S, Wooliver C, Williams A, Foster JS, McWilliams-Koeppen P, Uberbacher E, Cheng X, Kennel SJ. Preclinical validation of the heparin-reactive peptide p5+14 as a molecular imaging agent for visceral amyloidosis. Molecules. 2015;20(5):7657–82. https://doi.org/10.3390/molecules20057657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin EB, Williams A, Richey T, Wooliver C, Stuckey A, Foster JS, Kennel SJ, Wall JS. Evaluation of the effect of D-amino acid incorporation into amyloid-reactive peptides. J Transl Med. 2017;15(1):247. https://doi.org/10.1186/s12967-017-1351-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin EB, Kennel SJ, Richey T, Wooliver C, Osborne D, Williams A, Stuckey A, Wall JS. Dynamic PET and SPECT imaging with radioiodinated, amyloid-reactive peptide p5 in mice: a positive role for peptide dehalogenation. Peptides. 2014;60:63–70. https://doi.org/10.1016/j.peptides.2014.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wall JS, Paulus MJ, Gleason S, Gregor J, Solomon A, Kennel SJ. Micro-imaging of amyloid in mice. Methods Enzymol. 2006;412:161–82. https://doi.org/10.1016/S0076-6879(06)12011-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. 2011;38(4):742–52. https://doi.org/10.1007/s00259-010-1683-y.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Wall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, E.B., Stuckey, A., Kennel, S.J., Wall, J.S. (2019). Dual-Energy SPECT Imaging with Contrast-Enhanced CT: A Case Study. In: Kuntner-Hannes, C., Haemisch, Y. (eds) Image Fusion in Preclinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-02973-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02973-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02972-2

  • Online ISBN: 978-3-030-02973-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics