Skip to main content

Fault Modeling, Structural Testing, and Functional Testing

  • Chapter
  • First Online:
Micro-Electrode-Dot-Array Digital Microfluidic Biochips
  • 370 Accesses

Abstract

In order to ensure robust fluidic operations and high confidence in the outcome of biochemical experiments, MEDA biochips must be adequately tested before they can be used for bioassay execution. This chapter presents the first approach for testing of MEDA biochips that include both CMOS circuits and microfluidic components. The chapter first presents structural test techniques to evaluate the pass/fail status of each microcell (droplet actuation, droplet maintenance, and droplet sensing) and identify faulty microcells. In order to ensure correct operation of functional units, e.g., mixers and diluters, the chapter also presents functional test techniques to address fundamental MEDA operations, such as droplet dispensing, transportation, mixing, and splitting. The chapter finally evaluates the proposed test methods using simulations as well as experiments for fabricated MEDA biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Lai, K. Y.-T., Yu, P.-H., Ho, T.-Y., Chakrabarty, K., & Lee, C.-Y. (2016) High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of ACM/IEEE design automation conference (DAC) (pp. 146:1–146:6). New York: ACM.

    Google Scholar 

  2. Hu, K., Ibrahim, M., Chen, L., Li, Z., Chakrabarty, K., & Fair, R. (2015). Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform. In IEEE biomedical circuits and systems conference (BioCAS) (pp. 1–4).

    Google Scholar 

  3. Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Pajic, M., Ho, T.-Y., & Lee, C.-Y. (2016). Error recovery in a micro-electrode-dot-array digital microfluidic biochip. In Proceedings of IEEE/ACM international conference on computer-aided design (ICCAD) (pp. 105:1–105:8).

    Google Scholar 

  4. Lai, K. Y.-T., Shiu, M.-F., Lu, Y.-W., Ho, Y.-C., Kao, Y.-C., Yang, Y.-T., Wang, G., Liu, K.-M., Chang, H.-C., & Lee, C.-Y. (2015). A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard cmos process. In Proceedings of IEEE Asian solid-state circuits conference (A-SSCC) (pp. 1–4).

    Google Scholar 

  5. Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Ho, T.-Y., & Lee, C.-Y. (2017). Droplet size-aware high-level synthesis for micro-electrode-dot-array digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), 11(3), 612–626.

    Article  Google Scholar 

  6. Li, Z., Dinh, T. A., Ho, T.-Y., & Chakrabarty, K. (2014). Reliability-driven pipelined scan-like testing of digital microfluidic biochips. In Proceedings of IEEE Asian test symposium (ATS) (pp. 57–62).

    Google Scholar 

  7. Xu, T., & Chakrabarty, K. (2007). Functional testing of digital microfluidic biochips. In Proceedings of IEEE international test conference (ITC) (pp. 1–10).

    Google Scholar 

  8. Zhao, Y., Xu, T., & Chakrabarty, K. (2008). Built-in self-test and fault diagnosis for lab-on-chip using digital microfluidic logic gates. In Proceedings of IEEE international test conference (ITC) (pp. 1–10).

    Google Scholar 

  9. Shukla, V., Ali, N. B. Z., Hussin, F. A., & Zwolinski, M. (2013). On testing of MEDA based digital microfluidics biochips. In Proceedings of IEEE Asian symposium of quality electronic design (ASQED) (pp. 60–65).

    Google Scholar 

  10. Shukla, V., Ali, N. B. B. Z., Hussin, F.A., Hamid, N. H., & Sheikh, M. A. (2016). Fault modeling and simulation of MEDA-based digital microfluidics biochips. In Proceedings of IEEE international conference on VLSI design (VLSID) (pp. 469–474).

    Google Scholar 

  11. Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Ho, T.-Y., & Lee, C.-Y. (2016). Built-in self-test for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of IEEE international test conference (ITC) (pp. 1–10).

    Google Scholar 

  12. Xu, T., & Chakrabarty, K. (2009). Fault modeling and functional test methods for digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), 3, 241–253.

    Article  Google Scholar 

  13. Berry, S., Kedzierski, J., & Abedian, B. (2007). Irreversible electrowetting on thin fluoropolymer films. Langmuir, 23, 12429–12435.

    Article  Google Scholar 

  14. Su, F., Ozev, S., & Chakrabarty, K. (2003). Testing of droplet-based microelectrofluidic systems. In Proceedings of IEEE international test conference (ITC) (pp. 1192–1200).

    Google Scholar 

  15. Su, F., & Chakrabarty, K. (2005). Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sensors Journal, 5, 763–773.

    Article  Google Scholar 

  16. Su, F., Ozev, S., & Chakrabarty, K. (2006) Test planning and test resource optimization for droplet-based microfluidic systems. Journal of Electronic Testing Theory and Application (JETTA), 22(2), 199–210.

    Article  Google Scholar 

  17. Su, F., Hwang, W., Mukherjee, A., & Chakrabarty, K. (2007). Testing and diagnosis of realistic defects in digital microfluidic biochips. Journal of Electronic Testing Theory and Application (JETTA), 23(2–3), 219–233.

    Article  Google Scholar 

  18. Xu, T., & Chakrabarty, K. (2007). Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), 1, 148–158.

    Article  Google Scholar 

  19. Mitra, D., Ghoshal, S., Rahaman, H., Chakrabarty, K., & Bhattacharya, B. B. (2011). Test planning in digital microfluidic biochips using efficient eulerization techniques. Journal of Electronic Testing Theory and Application (JETTA), 27, 657–671.

    Article  Google Scholar 

  20. Lai, K. Y.-T., Yang, Y.-T., & Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85–93.

    Article  Google Scholar 

  21. Guo, R., Huang, Y., & Cheng, W.-T. (2015). Fault dictionary based scan chain failure diagnosis. August 18 2015, uS Patent 9,110,138.

    Google Scholar 

  22. Huang, Y., Guo, R., Cheng, W.-T., & Li, J. C.-M. (2008). Survey of scan chain diagnosis. IEEE Design & Test of Computers, 25, 240–248.

    Article  Google Scholar 

  23. Bushnell, M. M., & Agrawal, V. D. (2000). Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. Berlin: Springer.

    Google Scholar 

  24. Parpia, Z., Salama, C., & Hadaway, R. (1987). Modeling and characterization of CMOS-compatible high-voltage device structures. IEEE Transactions on Electron Devices (TED), 34, 2335–2343.

    Article  Google Scholar 

  25. Cheng, Y., Jeng, M.-C., Liu, Z., Huang, J., Chan, M., Chen, K., Ko, P. K., & Hu, C. (1997). A physical and scalable IV model in BSIM3v3 for analog/digital circuit simulation. IEEE Transactions on Electron Devices (TED), 44, 277–287.

    Article  Google Scholar 

  26. Li, Y.-M., & Connelly, J. A. (2003). Macromodeling with SPICE for the voltage breakdown behavior in bipolar junction and field-effect transistors. In Proceedings of IEEE southwest symposium on mixed-signal design (pp. 166–169).

    Google Scholar 

  27. Hodges, D. A., & Jackson, H. G. (2005). Analysis and design of digital integrated circuits. New York: Tata McGraw-Hill Education.

    Google Scholar 

  28. Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge: Cambridge University Press.

    Google Scholar 

  29. Wang, G., Teng, D., & Fan, S.-K. (2011). Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160.

    Article  Google Scholar 

  30. Bhasker, J., & Samad, T. (1991). The clique-partitioning problem. Computers & Mathematics with Applications, 22, 1–11.

    Article  MathSciNet  Google Scholar 

  31. Gross, J. L., & Yellen, J. (2005). Graph theory and its applications. Boca Raton: CRC Press.

    MATH  Google Scholar 

  32. Johnston, H. (1976). Cliques of a graph-variations on the bron-kerbosch algorithm. International Journal of Parallel Programming, 5, 209–238.

    MathSciNet  MATH  Google Scholar 

  33. Su, F., & Chakrabarty, K. (2005). Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of ACM/IEEE design automation conference (DAC) (pp. 825–830).

    Google Scholar 

  34. Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2013). Error recovery in cyberphysical digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 32(1), 59–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Chakrabarty, K., Ho, TY., Lee, CY. (2019). Fault Modeling, Structural Testing, and Functional Testing. In: Micro-Electrode-Dot-Array Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-02964-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02964-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02963-0

  • Online ISBN: 978-3-030-02964-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics