Skip to main content

High Power/Energy HF (DF) Lasers

  • Chapter
  • First Online:
High-Conductivity Channels in Space

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 103))

  • 327 Accesses

Abstract

Non-chain HF (DF) lasers are the most suitable and ecologically safe source of powerful and energetic coherent radiation in the 2.6–3.1 μm (HF laser) and 3.5–4.1 μm (DF laser) spectral regions. Among the different methods of HF (DF) pulse and pulse-periodic laser creation suggested by our team under the guidance of Academician A.M. Prokhorov was self-sustained volume discharge (SSVD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Apollonov et al., SSVD in CO2-N2-He gas mixtures Proc. Int. Conf. Lasers 85, 681 (1985)

    Google Scholar 

  2. V.V. Apollonov, SSVD based chemical lasers. Laser Focus World 12, 84 (2003)

    Google Scholar 

  3. V.V. Apollonov et al., Feasibility of increasing the output energy of a non-chain HF (DF) laser. Quantum Electron. 24, 213 (1997)

    Google Scholar 

  4. V.V. Apollonov et al., Non-chain electric discharge HF (DF) laser with high radiation energy. Quantum Electron. 25, 123 (1998)

    Google Scholar 

  5. V.V. Apollonov et al., High-power non-chain HF (DF) lasers initiated by SSVD, in Proceedings of SPIE, XII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, vol. 3574 (St Petersburg, Russia, 1998), p. 374

    Google Scholar 

  6. V.V. Apollonov et al., SSVD based pulse non-chain HF (DF) laser, in Proceedings of SPIE, High-Power Laser Ablation, vol. 3343 p. 783 (1998)

    Google Scholar 

  7. V.V. Apollonov et al., SIVD in non-chain HF lasers based on SF6-hydrocarbon mixtures. Quantum Electron. 30, 207 (2000)

    Google Scholar 

  8. V.V. Apollonov et al., SSVD for initiated wide aperture non-chain HF (DF) lasers. Izv. RAN Ser. Fiz. 64, 1439 (2000)

    Google Scholar 

  9. V.V. Apollonov et al., SSVD in mixtures of SF6 with hydrocarbons to excite non-chain HF lasers, in Proceedings of SPIE, International Conference on Atomic and Molecular Pulsed Lasers III, vol. 4071, p. 31 (2000)

    Google Scholar 

  10. V.V. Apollonov et al., Scaling up of non-chain HF (DF) laser initiated by SSVD, in Proceedings of SPIE, High-power Lasers in Energy Engineering vol. 3886, p. 370 (2000)

    Google Scholar 

  11. V.V. Apollonov et al., Generation and properties of SSVD in strongly electronegative gases, in Proceedings of XXV International Conference on Phenomena in Ionized Gases, ICPIG-2001, vol. 1 (Nagoya, Japan), p. 255 (2001)

    Google Scholar 

  12. V.V. Apollonov et al., Volume discharge in SFj mixtures with gydrocarbons, in Proceedings of XIII International Conference on Gas Discharge and their Applications, GD-2000, vol. 1 (Glasgow, UK), p. 409 (2001)

    Google Scholar 

  13. E.W. McDaniel, Gas lasers, in Applied Atomic Collision Physics, vol. 3 (Academic, New York, 1982)

    Google Scholar 

  14. Yu.D. Korolev, G.A. Mesyats, Physics of Pulse Discharge in Gases (Nauka, Moscow, 1991)

    Google Scholar 

  15. H. Brunet et al., Pulsed HF chemical laser using a VUV phototriggered discharge, in SPIE, VIII International Symposium on Gas Flow and Chemical Lasers, vol. 1397, p. 273 (1990)

    Google Scholar 

  16. H. Pummer et al., Parameter study of 10-J hydrogen fluoride laser. Appl. Phys. Lett. 22, 319 (1073)

    Google Scholar 

  17. V. Puech, High-efficiency, high-energy performance of a pulsed HF laser pumped by phototriggered discharge. Appl. Phys. B 55, 183 (1992)

    Google Scholar 

  18. N.N. Burtsev et al., 1984 On simultaneous formation of volume and sliding discharges of millimicrosecond duration for gas lasers pumping, in Proceedings of VII All-Union Conference on Physics Low-temperature Plasma (Tartu) (1984)

    Google Scholar 

  19. V.V. Apollonov et al., Discharge characteristics of a nonchain HF (DF) laser. Quantum Electron. 30, 483 (1987)

    Google Scholar 

  20. D.I. Slovetskii, A.A. Deryugin, Electron energy distribution functions and interaction of electrons with polyatomic molecules of fluorine-containing gases, in Plasma Chemistry, vol. 13, ed. by B.M. Smirnov (Energoizdat, Moscow, 1987), p. 240

    Google Scholar 

  21. N. Nakano et al., Simulation of RF glow discharges in SF6 by the relaxation continuum model: physical structure and function of the narrow-gap reactive-ion etcher. Phys. Rev. E 49, 4455 (1994)

    Google Scholar 

  22. H. Hilmert, W. Schmidt, Electron detachment from negative ions of sulfur hexafluoride-swarm experiments. J. Phys. D: Appl. Phys. 24, 915 (1991)

    Google Scholar 

  23. A.A. Belevtsev, L.M. Biberman, About some nonlinear effect in development of electron avalanches in electronegative gases Izv. Akad. Nauk SSSR Energ. Transp. 6, 74 (1997)

    Google Scholar 

  24. D. Hayashi et al., Role of reaction products in F–production in low-pressure, high-density CF4 plasmas. Japan. J. Appl. Phys. 38, 6084 (1999)

    Google Scholar 

  25. V.V. Apollonov et al., Ion-ion recombination in SF6 and SF6-C2H6 mixtures at high values of E/N. Quantum Electron. 31, 629 (2001)

    Google Scholar 

  26. V.V. Apollonov et al., Ion-ion recombination in SF6 and SF6-C2H6 mixtures at high values of E/N, in Proceedings of XXV International Conference on Phenomena in Ionized Gases, ICPIG-2001, vol. 3 (Nagoya, Japan), p. 277 (2001)

    Google Scholar 

  27. B. Lacour, High average power HF (DF) lasers, in Proceedings of SPIE, III International Conference on Atomic and Molecular Pulsed Lasers vol. 4071, p. 9 (1997)

    Google Scholar 

  28. Yu.M. Abrosimov et al., Measuring of a divergence of a pulsing laser radiation by a method of a focal spot with application of a reflecting wedge Tech. Measure. 4, 30 (1982)

    Google Scholar 

  29. S.D. Velikanov et al., Physical aspects of the operation of HF (DF) lasers with a closed active-medium replacement cycle. Quantum Electron. 24, 11 (1997)

    Google Scholar 

  30. V.V., Apollonov, A.M. Prokhorov, Ecologically safe high power lasers Keynote address at Int. Conf. Lasers Tucson, AX, USA, (2001)

    Google Scholar 

  31. V.V. Apollonov, High power self-controlled volume discharge based molecular lasers. Opt. Eng. 43, 16–33 (2004)

    Google Scholar 

  32. V.V. Apollonov, High Energy Molecular Lasers (Springer, Berlin, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Apollonov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apollonov, V. (2018). High Power/Energy HF (DF) Lasers. In: High-Conductivity Channels in Space. Springer Series on Atomic, Optical, and Plasma Physics, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-02952-4_16

Download citation

Publish with us

Policies and ethics