Skip to main content

Pareto-Based Many-Objective Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11242))

Abstract

Deep convolutional neural networks have been widely used in many areas. Generally, a vast amount of data are required for deep neural networks training, since they have a large number of parameters. This paper devotes to develop a many-objective convolutional neural network (MaO-CNN) model, which can obtain better classification performance than a single-objective one without sufficient training data. The main contributions of this paper are listed as follows: firstly, we propose many-class detection error trade-off (MaDET) and develop a MaO-CNN model in MaDET space; secondly, a hybrid framework of many-objective evolutionary algorithm is proposed for MaO-CNN model training; thirdly, a encoding method is designed for parameters encoding and MaO-CNN evolving. Experimental results based on well-known MNIST and SVHN datasets show that the new proposed model can obtain better results than a conventional one with the same amount of training data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, S.: Scene categorization through using objects represented by deep features. Int. J. Pattern Recogn. Artif. Intell. 31(9), 1–21 (2017)

    Article  Google Scholar 

  2. Goh, H., Thome, N., Cord, M., Lim, J.H.: Learning deep hierarchical visual feature coding. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2212–2225 (2014)

    Article  Google Scholar 

  3. Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–3277 (2015)

    Article  MathSciNet  Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016). http://www.deeplearningbook.org. Book in preparation for MIT Press

  5. Sosa Hernández, V.A., Schütze, O., Emmerich, M.: Hypervolume maximization via set based Newton’s method. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. AISC, vol. 288, pp. 15–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07494-8_2

    Chapter  MATH  Google Scholar 

  6. Ke, Q., Zhang, J., Song, H., Wan, Y.: Big data analytics enabled by feature extraction based on partial independence. Neurocomputing 288, 3–10 (2018). Learning System in Real-time Machine Vision

    Article  Google Scholar 

  7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  8. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2010)

    Google Scholar 

  9. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multi-objective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017)

    Google Scholar 

  10. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. In: Proceeding of the ACM International Conference on Multimedia (2015)

    Google Scholar 

  11. Wang, H., Jiao, L., Yao, X.: Two\(\_\)Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)

    Article  Google Scholar 

  12. Xia, C., Qi, F., Shi, G.: Bottom-up visual saliency estimation with deep autoencoder-based sparse reconstruction. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1227–1240 (2016)

    Article  MathSciNet  Google Scholar 

  13. Xia, Y., Zhang, B., Coenen, F.: Face occlusion detection using deep convolutional neural networks. Int. J. Pattern Recogn. Artif. Intell. 30(09), 1–24 (2016)

    Article  Google Scholar 

  14. Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  15. Zhao, J., et al.: Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms. Inf. Sci. 367–368, 80–104 (2016)

    Article  Google Scholar 

  16. Zhao, J.: 3D fast convex-hull-based evolutionary multiobjective optimization algorithm. Appl. Soft Comput. 67, 322–336 (2018)

    Article  Google Scholar 

  17. Zhao, J.: Multiobjective sparse ensemble learning by means of evolutionary algorithms. Decis. Support Syst. 111, 86–100 (2018)

    Article  Google Scholar 

  18. Zhao, Z., Jiao, L., Zhao, J., Gu, J., Zhao, J.: Discriminant deep belief network for high-resolution SAR image classification. Pattern Recogn. 61, 686–701 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Key Research and Development Plan (No. 2016YFC0600908), the National Natural Science Foundation of China (No. U1610124, 61572505 and 61772530), and the National Natural Science Foundation of Jiangsu Province (No. BK20171192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixiong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H., Xia, S., Zhao, J., Zhu, D., Yao, R., Niu, Q. (2018). Pareto-Based Many-Objective Convolutional Neural Networks. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds) Web Information Systems and Applications. WISA 2018. Lecture Notes in Computer Science(), vol 11242. Springer, Cham. https://doi.org/10.1007/978-3-030-02934-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02934-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02933-3

  • Online ISBN: 978-3-030-02934-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics