Skip to main content

Inter-organizational Business Processes Managed by Blockchain

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11233))

Abstract

Blockchain technology is highly expected to be a solution to the consistency and trust problems in managing business processes that span across organizational boundaries. However, to execute collaborative business processes, we need a mechanism for enabling entire workflows as a whole, where participants’ private processes must agree on the shared inter-organizational processes realized by Blockchain. To address this, we introduce a set of techniques that take business process models as input and transforms them into statecharts for Blockchain and process participants. We also optimize the size of the statechart in order to reduce the number of communications between Blockchain and participants. The statecharts are then used as a basis for generating software artifacts: smart contracts running on Blockchain and Web applications for process participants. Through the evaluation of our solution, we confirmed that our algorithms produce software artifacts that collaboratively work together. By applying the statechart reduction algorithms, we could reduce the number of sending and receiving events by 74% and 65% in two case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this paper, Blockchain refers to blockchain-related technologies in general.

References

  1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. arXiv preprint arXiv:1801.10228 (2018)

  2. Angular (2016). https://angular.io/

  3. BPMN 2.0 by Example (2010). https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

  4. Business Process Model and Notation Specification Version 2.0.2 (2014). https://www.omg.org/spec/BPMN/2.0.2/PDF/

  5. Buterin, V.: A next-generation smart contract and decentralized application platform. White paper (2014)

    Google Scholar 

  6. García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_8

    Chapter  Google Scholar 

  7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)

    Article  MathSciNet  Google Scholar 

  8. López-Pintado, O., et al.: Caterpillar: a blockchain-based business process management system. In: Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain (2017)

    Google Scholar 

  9. Madsen, M.F., et al.: Collaboration among adversaries: distributed workflow execution on a blockchain. In: 2018 Symposium on Foundations and Applications of Blockchain (2018)

    Google Scholar 

  10. Mendling, J., et al.: Blockchains for business process management-challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

    Google Scholar 

  11. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven software development. IEEE Softw. 20(5), 42–45 (2003)

    Article  Google Scholar 

  12. State Chart XML (SCXML): State Machine Notation for Control Abstraction (2015). https://www.w3.org/TR/scxml/

  13. Tabuchi, N., Sato, N., Nakamura, H.: Model-driven performance analysis of UML design models based on stochastic process algebra. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 41–58. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741_5

    Chapter  Google Scholar 

  14. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

    Chapter  Google Scholar 

  15. Yli-Huumo, J., et al.: Where is current research on blockchain technology?—a systematic review. PloS One 11(10), e0163477 (2016)

    Article  Google Scholar 

  16. Ziadi, T., Helouet, L., Jezequel, J.-M.: Revisiting statechart synthesis with an algebraic approach. In: Proceedings of the 26th International Conference on Software Engineering. IEEE Computer Society (2004)

    Google Scholar 

  17. Zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36926-1_35

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Takaaki Tateishi for providing us with the SCXML translator and statechart engine for Hyperledger Fabric, and Sachiko Yoshihama and Koichi Kamijo for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakamura, H., Miyamoto, K., Kudo, M. (2018). Inter-organizational Business Processes Managed by Blockchain. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11233. Springer, Cham. https://doi.org/10.1007/978-3-030-02922-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02922-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02921-0

  • Online ISBN: 978-3-030-02922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics