Skip to main content

The SAGITTA Approach for Optimizing Solar Energy Consumption in Distributed Clouds with Stochastic Modeling

  • Conference paper
  • First Online:
Book cover Smart Cities, Green Technologies, and Intelligent Transport Systems (SMARTGREENS 2017, VEHITS 2017)

Abstract

Facing the urgent need to decrease data centers’ energy consumption, Cloud providers resort to on-site renewable energy production. Solar energy can thus be used to power data centers. Yet this energy production is intrinsically fluctuating over time and depending on the geographical location. In this paper, we propose a stochastic modeling for optimizing solar energy consumption in distributed clouds. Our approach, named SAGITTA (Stochastic Approach for Green consumption In disTributed daTA centers), is shown to produce a virtual machine scheduling close to the optimal algorithm in terms of energy savings and to outperform classical round-robin approaches over varying Cloud workloads and real solar energy generation traces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.grid5000.fr.

  2. 2.

    https://aws.amazon.com/ec2/.

  3. 3.

    http://photovolta2.univ-nantes.fr.

References

  1. Shehabi, A., et al.: United States Data Center Energy Usage Report. Technical report, Lawrence Berkeley National Laboratory (2016)

    Google Scholar 

  2. Tripathi, R., Vignesh, S., Tamarapalli, V.: Optimizing green energy, cost, and availability in distributed data centers. IEEE Commun. Lett. 21(3), 500–503 (2017)

    Article  Google Scholar 

  3. Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B., Fathy, H.: Energy storage in datacenters: What, where, and how much? In: ACM SIGMETRICS/PERFORMANCE, pp. 187–198 (2012)

    Article  Google Scholar 

  4. Camus, B., Dufossé, F., Orgerie, A.C.: A stochastic approach for optimizing green energy consumption in distributed clouds. In: International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), pp. 47–59 (2017)

    Google Scholar 

  5. Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, D., Karl, W.: Scientific cloud computing: early definition and experience. In: IEEE International Conference on High Performance Computing and Communications (HPCC), pp. 825–830 (2008)

    Google Scholar 

  6. Koomey, J.: Growth in Data Center Electricity Use 2005 to 2010. Analytics Press, Berkeley (2011)

    Google Scholar 

  7. Katz, R.H.: Tech titans building boom. IEEE Spectr. 46, 40–54 (2009)

    Article  Google Scholar 

  8. : How dirty is your data? Greenpeace report (2011)

    Google Scholar 

  9. Figuerola, S., Lemay, M., Reijs, V., Savoie, M., St. Arnaud, B.: Converged optical network infrastructures in support of future internet and grid services using IaaS to reduce GHG emissions. J. Lightwave Technol. 27, 1941–1946 (2009)

    Article  Google Scholar 

  10. Callau-Zori, M., Samoila, L., Orgerie, A.C., Pierre, G.: An experiment-driven energy consumption model for virtual machine management systems. Technical Report 8844, Inria (2016)

    Google Scholar 

  11. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: ACM International Symposium on Computer Architecture (ISCA), pp. 13–23 (2007)

    Google Scholar 

  12. Snowdon, D., Ruocco, S., Heiser, G.: Power management and dynamic voltage scaling: myths and facts. In: Workshop on Power Aware Real-time Computing (2005)

    Google Scholar 

  13. Talaber, R., Brey, T., Lamers, L.: Using Virtualization to Improve Data Center Efficiency. Technical report, The Green Grid (2009)

    Google Scholar 

  14. Barham, P., et al.: Xen and the art of virtualization. In: ACM Symposium on Operating Systems Principles (SOSP), pp. 164–177 (2003)

    Google Scholar 

  15. Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., Rajkumar, R.: Critical power slope: understanding the runtime effects of frequency scaling. In: ACM International Conference on Supercomputing (ICS), pp. 35–44 (2002)

    Google Scholar 

  16. Orgerie, A.C., Dias de Assunção, M., Lefèvre, L.: A survey on techniques for improving the energy efficiency of large-scale distributed systems. ACM Comput. Surv. (CSUR) 46, 47:1–47:31 (2014)

    Article  Google Scholar 

  17. Raïs, I., Orgerie, A.-C., Quinson, M.: Impact of shutdown techniques for energy-efficient cloud data centers. In: Carretero, J., Garcia-Blas, J., Ko, R.K.L., Mueller, P., Nakano, K. (eds.) ICA3PP 2016. LNCS, vol. 10048, pp. 203–210. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49583-5_15

    Chapter  Google Scholar 

  18. Ren, S., He, Y., Xu, F.: Provably-efficient job scheduling for energy and fairness in geographically distributed data centers. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 22–31 (2012)

    Google Scholar 

  19. Deng, W., Liu, F., Jin, H., Li, B., Li, D.: Harnessing renewable energy in cloud datacenters: opportunities and challenges. IEEE Netw. 28, 48–55 (2014)

    Article  Google Scholar 

  20. Tighe, M., Keller, G., Bauer, M., Lutfiyya, H.: DCSim: a data centre simulation tool for evaluating dynamic virtualized resource management. In: Workshop on Systems Virtualization Management, pp. 385–392 (2012)

    Google Scholar 

  21. Camus, B., et al.: Hybrid co-simulation of FMUs using DEV&DESS in MECSYCO. In: Symposium on Theory of Modeling & Simulation - DEVS Integrative M&S Symposium (2016)

    Google Scholar 

  22. Camus, B., et al.: MECSYCO: a multi-agent DEVS wrapping platform for the co-simulation of complex systems. Research report, LORIA (2016)

    Google Scholar 

  23. Zeigler, B., Praehofer, H., Kim, T.: Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic Press, Cambridge (2000)

    Google Scholar 

  24. Li, Y., Orgerie, A.C., Menaud, J.M.: Opportunistic scheduling in clouds partially powered by green energy. In: IEEE International Conference on Green Computing and Communications (GreenCom) (2015)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Inria exploratory research project COSMIC (Coordinated Optimization of SMart grIds and Clouds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Cécile Orgerie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camus, B., Dufossé, F., Orgerie, AC. (2019). The SAGITTA Approach for Optimizing Solar Energy Consumption in Distributed Clouds with Stochastic Modeling. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O., Pascoal, A. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. SMARTGREENS VEHITS 2017 2017. Communications in Computer and Information Science, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-02907-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02907-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02906-7

  • Online ISBN: 978-3-030-02907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics