Skip to main content

Fertility Risk with Cancer Therapy

  • Chapter
  • First Online:

Abstract

The incidence of cancer has slowly stabilized with 1.7 million new cases estimated in 2018. Of those, 10,270 are estimated to occur in the pediatric population ages 0–14 with 70,000 in the adolescent and young adult (AYA) population ages 15–39. Advances in cancer treatments have significantly improved the outcome for pediatric cancers, with 80% of children now surviving 5 years or more. Unfortunately, 5-year survival rates for AYAs remain lower at 70%. Reasons include differences in tumor biology; fewer available clinical trials, lack of comprehensive insurance coverage, and barriers to access such as location, employment, and educational time constraints. With improvements in treatment, there are estimated to be 500,000 childhood cancer survivors by 2020, and 1 in 25 will be of reproductive age. Compromised fertility occurs in 12% and 66% of at-risk female and male survivors of childhood cancer. Manifestations of gonadal injury include disordered puberty from hormonal deficiency, decreased reproductive and sexual function, psychosocial effects, and menopause-related health problems in female survivors such as genitourinary syndrome of menopause and cardiac, skeletal, and cognitive dysfunction. Standard options for fertility preservation include sperm, oocyte, and embryo banking. Investigational options include testicular and ovarian and immature oocyte cryopreservation. Most options are invasive and costly, and standard options in females require an average of 10–12 days for stimulation and retrieval prior to cancer treatment. Estimating risk prior to therapy allows determination and implementation of the appropriate fertility-preserving therapies. Minimizing risk prior to therapy may mitigate the need for invasive and costly fertility-preserving therapies while preserving hormonal function after cancer treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Keegan TH, et al. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122(7):1009–16.

    Article  PubMed  Google Scholar 

  3. Alvarez E, et al. Adolescent and young adult oncology patients: disparities in access to specialized cancer centers. Cancer. 2017;123(13):2516–23.

    Article  PubMed  Google Scholar 

  4. Hudson MM, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chemaitilly W, et al. Endocrine late effects in childhood cancer survivors. J Clin Oncol. 2018;36:2153–9: p. JCO2017763268

    Article  CAS  PubMed  Google Scholar 

  6. Faubion SS, Loprinzi CL, Ruddy KJ. Management of hormone deprivation symptoms after cancer. Mayo Clin Proc. 2016;91(8):1133–46.

    Article  PubMed  Google Scholar 

  7. Practice Committees of American Society for Reproductive, M, T. Society for Assisted Reproductive. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99(1):37–43.

    Article  Google Scholar 

  8. Oktay K, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36(19):1994–2001.

    Article  PubMed  Google Scholar 

  9. Djaladat H. Organ-sparing surgery for testicular tumours. Curr Opin Urol. 2015;25(2):116–20.

    Article  PubMed  Google Scholar 

  10. Ntali G, Karavitaki N. Efficacy and complications of pituitary irradiation. Endocrinol Metab Clin N Am. 2015;44(1):117–26.

    Article  Google Scholar 

  11. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100:1180–6.

    Article  CAS  PubMed  Google Scholar 

  12. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.

    Article  CAS  Google Scholar 

  13. Green DM, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aldrink JH, et al. Using quality improvement methodology to improve ovarian salvage for benign ovarian masses. J Pediatr Surg. 2018;53(1):67–72.

    Google Scholar 

  15. Luczak J, Baglaj M. Selecting treatment method for ovarian masses in children – 24 years of experience. J Ovarian Res. 2017;10(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gershenson DM. Management of borderline ovarian tumours. Best Pract Res Clin Obstet Gynaecol. 2017;41:49–59.

    Article  PubMed  Google Scholar 

  17. Rosendahl M, Simonsen MK, Kjer JJ. The influence of unilateral oophorectomy on the age of menopause. Climacteric. 2017;20(6):540–4.

    Google Scholar 

  18. Bjelland EK, et al. Is unilateral oophorectomy associated with age at menopause? A population study (the HUNT2 Survey). Hum Reprod. 2014;29:835–41.

    Article  CAS  PubMed  Google Scholar 

  19. diZerega GS. The peritoneum and its response to surgical injury. Prog Clin Biol Res. 1990;358:1–11.

    CAS  PubMed  Google Scholar 

  20. Practice Committee of the American Society for Reproductive Medicine. Pathogenesis, consequences, and control of peritoneal adhesions in gynecologic surgery. Fertil Steril. 2007;88(1):21–6.

    Article  Google Scholar 

  21. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Updat. 2001;7(6):535–43.

    Article  CAS  Google Scholar 

  22. Meirow D, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22(6):1626–33.

    Article  CAS  PubMed  Google Scholar 

  23. Wallace WH, et al. Gonadal dysfunction due to cis-platinum. Med Pediatr Oncol. 1989;17(5):409–13.

    CAS  PubMed  Google Scholar 

  24. van Dorp W, et al. Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: a report from the International Late effects of Childhood Cancer Guideline Harmonization Group in Collaboration with the PanCareSurFup Consortium. J Clin Oncol. 2016;34(28):3440.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wallace WH, et al. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.

    Article  PubMed  Google Scholar 

  26. Larsen EC, et al. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet Gynecol Scand. 2004;83(1):96–102.

    Article  PubMed  Google Scholar 

  27. Green DM, et al. Fertility of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(16):2677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meirow D, et al. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum Reprod. 2004;19(6):1294–9.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, et al. Combination of a GnRH agonist with an antagonist prevents flare-up effects and protects primordial ovarian follicles in the rat ovary from cisplatin-induced toxicity: a controlled experimental animal study. Reprod Biol Endocrinol. 2013;11(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ataya K, et al. Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod. 1995;52(2):365–72.

    Article  CAS  PubMed  Google Scholar 

  31. Badawy A, et al. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril. 2009;91(3):694–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mastro D, et al. Medical approaches to preservation of fertility in female cancer patients. Expert Opin Pharmacother. 2011;12(3):387–96.

    Article  PubMed  Google Scholar 

  33. Demeestere I, et al. Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J Clin Oncol. 2013;31(7):903–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gerber B, et al. Gonadotropin-releasing hormone analogue for premenopausal women with breast cancer. JAMA. 2011;306(16):1760.

    PubMed  Google Scholar 

  35. Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30(5):533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elgindy EA, et al. Gonadatrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol. 2013;121(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  37. Kerr JB, et al. Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat Med. 2012;18(8):1170–2; author reply 1172–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kilic S, et al. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol. 2014;30(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  39. Fu X, et al. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10(4):353–63.

    Article  CAS  PubMed  Google Scholar 

  40. Abd-Allah SH, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy. 2013;15(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  41. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14.

    Article  CAS  PubMed  Google Scholar 

  42. Casper RF Jurisicova A. Protecting the female germ line from cancer therapy. Nat Med 2000;6(10):1100-1.

    Google Scholar 

  43. Hancke K, et al. Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertil Steril. 2007;87(1):172–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kaya H, Desdicioglu R, Sezik M, Ulukaya E, Ozkaya O, Yimaztepe A, et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? Fertil Steril. 2008;89(3):732–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KYF, Toscano NP, et al. In vivo delivery of fty720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril. 2011;95(4):1440–U289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ting AY, Petroff BK. Tamoxifen decreases ovarian follicular loss from experimental toxicant DMBA and chemotherapy agents cyclophosphamide and doxorubicin in the rat. J Assist Reprod Genet. 2010;27(11):591–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hickman LC, et al. Preservation of gonadal function in women undergoing chemotherapy: a systematic review and meta-analysis of the potential role for gonadotropin-releasing hormone agonists. J Assist Reprod Genet. 2018;35(4):571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sverrisdottir A, et al. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat. 2009;117(3):561–7.

    Article  CAS  PubMed  Google Scholar 

  49. Kalich-Philosoph L, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra62.

    Article  CAS  PubMed  Google Scholar 

  50. Skaznik-Wikiel ME, et al. Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertil Steril. 2013;99(7):2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Green DM, et al. Quantifying alkylating agent exposure: evaluation of the cyclophosphamide equivalent dose: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2011;29(15):9547.

    Article  Google Scholar 

  52. Green DM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  53. Meirow D, et al. Prevention of severe menorrhagia in oncology patients with treatment-induced thrombocytopenia by luteinizing hormone-releasing hormone agonist and depo-medroxyprogesterone acetate. Cancer. 2006;107(7):1634–41.

    Article  CAS  PubMed  Google Scholar 

  54. Eifel P, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst. 2001;93(13):979–89.

    Article  CAS  PubMed  Google Scholar 

  55. Goldhirsch A, et al. Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol. 2001;19(18):3817–27.

    Article  CAS  PubMed  Google Scholar 

  56. Turner NH, et al. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: the benefit remains uncertain. Ann Oncol. 2013;24(9):2224–35.

    Article  CAS  PubMed  Google Scholar 

  57. Del Mastro L, et al. Gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in cancer women: systematic review and meta-analysis of randomized trials. Cancer Treat Rev. 2014;40(5):675–83.

    Article  CAS  PubMed  Google Scholar 

  58. Oktay K, et al. Absence of conclusive evidence for the safety and efficacy of gonadotropin-releasing hormone analogue treatment in protecting against chemotherapy-induced gonadal injury. Oncologist. 2007;12(9):1055–66.

    Article  CAS  PubMed  Google Scholar 

  59. Moore HC, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med. 2015;372(10):923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lambertini M, et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: a systematic review and meta-analysis of individual patient-level data. J Clin Oncol. 2018;36(19):1981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kano M, et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci U S A. 2017;114(9):E1688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woodruff TK. A win-win for women’s reproductive health: a nonsteroidal contraceptive and fertoprotective neoadjuvant. Proc Natl Acad Sci U S A. 2017;114(9):2101–2.

    Google Scholar 

  63. Gonfloni S, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  64. Morgan S, et al. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One. 2013;8(7):e70117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cherry SM, Hunt PA, Hassold TJ. Cisplatin disrupts mammalian spermatogenesis, but does not affect recombination or chromosome segregation. Mutat Res Genet Toxicol Environ Mutagen. 2004;564(2):115–28.

    Article  CAS  Google Scholar 

  66. Woodruff TK. Preserving fertility during cancer treatment. Nat Med. 2009;15(10):1124–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang-Rodriguez J, et al. STI-571 (Gleevec) potentiates the effect of cisplatin in inhibiting the proliferation of head and neck squamous cell carcinoma in vitro. Laryngoscope. 2006;116(8):1409–16.

    Article  CAS  PubMed  Google Scholar 

  68. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  69. Dawn B, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005;102(10):3766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eliopoulos N, et al. Erythropoietin gene-enhanced marrow mesenchymal stromal cells decrease cisplatin-induced kidney injury and improve survival of allogeneic mice. Mol Ther. 2011;19(11):2072–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Villanueva PD, et al. Functional multipotency of stem cells: what do we need from them in the heart? Stem Cells Int. 2012;2012:817364.

    Google Scholar 

  72. Roodhart JML, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370–83.

    Article  CAS  PubMed  Google Scholar 

  73. Strub GM, et al. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol. 2010;688:141–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6(4):e19475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li F, et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  76. Guzel Y, Bildik G, Oktem O. Sphingosine-1-phosphate protects human ovarian follicles from apoptosis in vitro. Eur J Obstet Gynecol Reprod Biol. 2018;222:19–24.

    Article  CAS  PubMed  Google Scholar 

  77. Guzel Y, et al. Sphingosine-1-phosphate reduces atresia of primordial follicles occurring during slow-freezing and thawing of human ovarian cortical strips. Mol Reprod Dev. 2018;85:858–64.

    Article  CAS  PubMed  Google Scholar 

  78. Paris F, et al. Sphingosine 1-phosphate preserves fertility in irradiated female mice without propagating genomic damage in offspring. Nat Med. 2002;8(9):901–2.

    Article  CAS  PubMed  Google Scholar 

  79. Mahran YF, et al. Insights into the protective mechanisms of tamoxifen in radiotherapy-induced ovarian follicular loss: impact on insulin-like growth factor 1. Endocrinology. 2013;154(10):3888–99.

    Article  CAS  PubMed  Google Scholar 

  80. Rose DP, Davis TE. Effects of adjuvant chemohormonal therapy on the ovarian and adrenal-function of breast-cancer patients. Cancer Res. 1980;40(11):4043–7.

    CAS  PubMed  Google Scholar 

  81. Albain KS, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009;374(9707):2055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dubey RK, et al. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circ Res. 1999;84(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  83. Nathan L, Chaudhuri G. Antioxidant and prooxidant actions of estrogens: potential physiological and clinical implications. Semin Reprod Endocrinol. 1998;16(4):309–14.

    Article  CAS  PubMed  Google Scholar 

  84. Hayun M, et al. The immunomodulator AS101 induces growth arrest and apoptosis in multiple myeloma: association with the Akt/Survivin pathway. Biochem Pharmacol. 2006;72(11):1423–31.

    Article  CAS  PubMed  Google Scholar 

  85. Indenbaum V, et al. In vitro and in vivo activity of AS101 against West Nile virus (WNV). Virus Res. 2012;166(1–2):68–76.

    Article  CAS  PubMed  Google Scholar 

  86. Kalechman Y, et al. Protective and restorative role of As101 in combination with chemotherapy. Cancer Res. 1991;51(5):1499–503.

    CAS  PubMed  Google Scholar 

  87. Kalechman Y, et al. As101 protection of bone-marrow stromal cells function from adverse-effects of cyclophosphamide treatment in-vivo or Asta-Z in-vitro. Exp Hematol Oncol. 1992;20(6):728.

    Google Scholar 

  88. Kalechman Y, et al. The protective role of As101 in combination with cytotoxic drugs acting by various mechanisms of action. J Immunol. 1993;150(8):A131.

    Google Scholar 

  89. Sredni B, et al. Ammonium trichloro (dioxoethylene-o,o′) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64(5):1843–52.

    Article  CAS  PubMed  Google Scholar 

  90. Kalechman Y, et al. Effect of the immunomodulator As101 on chemotherapy-induced multilineage myelosuppression, thrombocytopenia, and anemia in mice. Exp Hematol Oncol. 1995;23(13):1358–66.

    CAS  Google Scholar 

  91. Sredni B, et al. Predominance of TH1 response in tumor bearing mice and cancer patients treated with AS101. J Natl Cancer Inst. 1996;88(18):1276–84.

    Article  CAS  PubMed  Google Scholar 

  92. Carmely A, et al. Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod. 2009;24(6):1322–9.

    Article  CAS  PubMed  Google Scholar 

  93. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78(11):2791–808.

    CAS  PubMed  Google Scholar 

  94. Bussolino F, et al. Granulocyte-colony and granulocyte-macrophage-colony stimulating factors induce human-endothelial cells to migrate and proliferate. Nature. 1989;337(6206):471–3.

    Article  CAS  PubMed  Google Scholar 

  95. Akdemir A, et al. Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model. Gynecol Oncol. 2014;25(4):328–33.

    Article  CAS  Google Scholar 

  96. Solaroglu I, et al. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143(4):965–74.

    Article  CAS  PubMed  Google Scholar 

  97. Harada M, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med. 2005;11(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  98. Smith TJ, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24(19):3187–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Coker Appiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Appiah, L.C., Green, D.M. (2019). Fertility Risk with Cancer Therapy. In: Woodruff, T., Shah, D., Vitek, W. (eds) Textbook of Oncofertility Research and Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-02868-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02868-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02867-1

  • Online ISBN: 978-3-030-02868-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics